Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription

被引:1022
作者
Zilberman, Daniel [1 ]
Gehring, Mary [1 ]
Tran, Robert K. [1 ]
Ballinger, Tracy [1 ]
Henikoff, Steven [1 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA
关键词
D O I
10.1038/ng1929
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Cytosine methylation, a common form of DNA modification that antagonizes transcription, is found at transposons and repeats in vertebrates, plants and fungi. Here we have mapped DNA methylation in the entire Arabidopsis thaliana genome at high resolution. DNA methylation covers transposons and is present within a large fraction of A. thaliana genes. Methylation within genes is conspicuously biased away from gene ends, suggesting a dependence on RNA polymerase transit. Genic methylation is strongly influenced by transcription: moderately transcribed genes are most likely to be methylated, whereas genes at either extreme are least likely. In turn, transcription is influenced by methylation: short methylated genes are poorly expressed, and loss of methylation in the body of a gene leads to enhanced transcription. Our results indicate that genic transcription and DNA methylation are closely interwoven processes.
引用
收藏
页码:61 / 69
页数:9
相关论文
共 41 条
[1]   METHYLATION INDUCED PREMEIOTICALLY IN ASCOBOLUS - COEXTENSION WITH DNA REPEAT LENGTHS AND EFFECT ON TRANSCRIPT ELONGATION [J].
BARRY, C ;
FAUGERON, G ;
ROSSIGNOL, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (10) :4557-4561
[2]   Transcription through chromatin: understanding a complex FACT [J].
Belotserkovskaya, R ;
Saunders, A ;
Lis, JT ;
Reinberg, D .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2004, 1677 (1-3) :87-99
[3]   Functional annotation of the Arabidopsis genome using controlled vocabularies [J].
Berardini, TZ ;
Mundodi, S ;
Reiser, L ;
Huala, E ;
Garcia-Hernandez, M ;
Zhang, PF ;
Mueller, LA ;
Yoon, J ;
Doyle, A ;
Lander, G ;
Moseyko, N ;
Yoo, D ;
Xu, I ;
Zoeckler, B ;
Montoya, M ;
Miller, N ;
Weems, D ;
Rhee, SY .
PLANT PHYSIOLOGY, 2004, 135 (02) :745-755
[4]   DNA METHYLATION - EVOLUTION OF A BACTERIAL IMMUNE FUNCTION INTO A REGULATOR OF GENE-EXPRESSION AND GENOME STRUCTURE IN HIGHER EUKARYOTES [J].
BESTOR, TH .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1990, 326 (1235) :179-187
[5]   GENE NUMBER, NOISE-REDUCTION AND BIOLOGICAL COMPLEXITY [J].
BIRD, AP .
TRENDS IN GENETICS, 1995, 11 (03) :94-100
[6]   Gardening the genome:: DNA methylation in Arabidopsis thaliana [J].
Chan, SWL ;
Henderson, IR ;
Jacobsen, SE .
NATURE REVIEWS GENETICS, 2005, 6 (05) :351-360
[7]   DNA methylation in insects [J].
Field, LM ;
Lyko, F ;
Mandrioli, M ;
Prantera, G .
INSECT MOLECULAR BIOLOGY, 2004, 13 (02) :109-115
[8]   Controlling DNA methylation: many roads to one modification [J].
Freitag, M ;
Selker, EU .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2005, 15 (02) :191-199
[9]   DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation [J].
Gehring, M ;
Huh, JH ;
Hsieh, TF ;
Penterman, J ;
Choi, Y ;
Harada, JJ ;
Goldberg, RB ;
Fischer, RL .
CELL, 2006, 124 (03) :495-506
[10]   Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex [J].
Gilfillan, GD ;
Straub, T ;
de Wit, E ;
Greil, F ;
Lamm, R ;
van Steensel, B ;
Becker, PB .
GENES & DEVELOPMENT, 2006, 20 (07) :858-870