Evaluation of current techniques for isolation of chars as natural adsorbents

被引:29
作者
Chun, Y
Sheng, GY [1 ]
Chiou, CT
机构
[1] Univ Arkansas, Dept Soil Crop & Environm Sci, Fayetteville, AR 72701 USA
[2] Nanjing Univ, Dept Chem, Nanjing 210093, Peoples R China
[3] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA
关键词
D O I
10.1021/es034893h
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Chars in soils or sediments may potentially influence the soil/sediment sorption behavior. Current techniques for the isolation of black carbon including chars rely often on acid demineralization, base extraction, and chemical oxidation to remove salts and minerals, humic acid, and refractory kerogen, respectively. Little is known about the potential effects of these chemical processes on the char surface and adsorptive properties. This study examined the effects of acid demineralization, base extraction, and acidic Cr2O72- oxidation on the surface areas, surface acidity, and benzene adsorption characteristics of laboratory-produced pinewood and wheat-residue chars, pure or mixed with soils, and a commercial activated carbon. Demineralization resulted in a small reduction in the char surface area, whereas base extraction showed no obvious effect. Neither demineralization nor base extraction caused an appreciable variation in benzene adsorption and presumably the char surface properties. By contrast, the Cr2O72- oxidation caused a >31% reduction in char surface area. The Boehm titration, supplemented by FTIR spectra, indicated that the surface acidity of oxidized chars increased by a factor between 2.3 and 12 compared to nonoxidized chars. Benzene adsorption with the oxidized chars was lower than that with the non-oxidized chars by a factor of >8.9; both the decrease in char surface area and the increase in char surface acidity contributed to the reduction in char adsorptive power. Although the Cr2O72-oxidation effectively removes resistant kerogen, it is not well suited for the isolation of chars as contaminant adsorbents because of its destructive nature. Alternative nondestructive techniques that preserve the char surface properties and effectively remove kerogen must be sought.
引用
收藏
页码:4227 / 4232
页数:6
相关论文
共 44 条
[1]   Reinterpreting literature sorption data considering both absorption into organic carbon and adsorption onto black carbon [J].
Accardi-Dey, A ;
Gschwend, PM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (01) :99-106
[2]   Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments [J].
Accardi-Dey, A ;
Gschwend, PM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2002, 36 (01) :21-29
[3]   New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks [J].
Allen-King, RM ;
Grathwohl, P ;
Ball, WP .
ADVANCES IN WATER RESOURCES, 2002, 25 (8-12) :985-1016
[4]  
[Anonymous], 1985, CARBON CYCLE ATMOSPH
[5]  
Bansal R.C., 1988, ACTIVE CARBON
[6]  
Boehm H.P., 1966, CHEM IDENTIFICATION, V16,, P179, DOI [10.1016/S0360-0564(08)60354-5, DOI 10.1016/S0360-0564(08)60354-5]
[7]   SURFACE OXIDES OF CARBON [J].
BOEHM, HP ;
HECK, W ;
SAPPOK, R ;
DIEHL, E .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1964, 3 (10) :669-&
[8]   Determination of atmospheric soot carbon with a simple thermal method [J].
Cachier, Helene ;
Bremond, Marie-Pierre ;
Buat-Menard, Patrick .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1989, 41 (03) :379-390
[9]  
Chiou C.T., 2002, PARTITION ADSORPTION
[10]   MECHANISTIC ROLES OF SOIL HUMUS AND MINERALS IN THE SORPTION OF NONIONIC ORGANIC-COMPOUNDS FROM AQUEOUS AND ORGANIC SOLUTIONS [J].
CHIOU, CT ;
SHOUP, TD ;
PORTER, PE .
ORGANIC GEOCHEMISTRY, 1985, 8 (01) :9-14