11-year solar cycle in the stratosphere extracted by the empirical mode decomposition method

被引:162
作者
Coughlin, KT [1 ]
Tung, KK [1 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
来源
SOLAR VARIABILITY AND CLIMATE CHANGE | 2004年 / 34卷 / 02期
基金
美国国家科学基金会;
关键词
solar cycles; stratosphere; empirical mode decomposition method;
D O I
10.1016/j.asr.2003.02.045
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We apply a novel method to extract the solar cycle signal from stratospheric data. An alternative to traditional analysis is a nonlinear empirical mode decomposition (EMD) method. This method is adaptive and therefore highly efficient at identifying embedded structures, even those with small amplitudes. Using this analysis, the geopotential height in the Northern Hemisphere can be completely decomposed into five non-stationary temporal modes including an annual cycle, a QBO signal, an ENSO-like mode, a solar cycle signal and a trend. High correlations with the sunspot cycle unambiguously establish that the fourth mode is an 11-year solar cycle signal. (C) 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:323 / 329
页数:7
相关论文
共 26 条
  • [1] MODES OF INTERANNUAL VARIABILITY IN THE STRATOSPHERE
    DUNKERTON, TJ
    BALDWIN, MP
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1992, 19 (01) : 49 - 52
  • [2] THE ROLE OF STRATOSPHERIC OZONE IN MODULATING THE SOLAR RADIATIVE FORCING OF CLIMATE
    HAIGH, JD
    [J]. NATURE, 1994, 370 (6490) : 544 - 546
  • [3] HOGG RV, 1993, PROBABILITY STAT INF, P543
  • [4] HOOD LL, 1993, J ATMOS SCI, V50, P3941, DOI 10.1175/1520-0469(1993)050<3941:QDVOTS>2.0.CO
  • [5] 2
  • [6] The solar cycle variation of total ozone: Dynamical forcing in the lower stratosphere
    Hood, LL
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D1) : 1355 - 1370
  • [7] A new view of nonlinear water waves: The Hilbert spectrum
    Huang, NE
    Shen, Z
    Long, SR
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 1999, 31 : 417 - 457
  • [8] The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    Huang, NE
    Shen, Z
    Long, SR
    Wu, MLC
    Shih, HH
    Zheng, QN
    Yen, NC
    Tung, CC
    Liu, HH
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971): : 903 - 995
  • [9] Kalnay E, 1996, B AM METEOROL SOC, V77, P437, DOI 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO
  • [10] 2