Phosphorylation and activation of Bub1 on unattached chromosomes facilitate the spindle checkpoint

被引:57
作者
Chen, RH [1 ]
机构
[1] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY USA
关键词
Bub1; kinetochore; MAP kinase; phosphorylation; spindle checkpoint;
D O I
10.1038/sj.emboj.7600308
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The spindle checkpoint inhibits anaphase until all kinetochores have attached properly to spindle microtubules. The protein kinase Bub1 is an essential checkpoint component that resides at kinetochores during mitosis. It is shown herein that Xenopus Bub1 becomes hyperphosphorylated and the kinase is activated on unattached chromosomes. MAP kinase (MAPK) contributes to this phosphorylation, as inhibiting MAPK or altering MAPK consensus sites in Bub1 to alanine or valine (Bub1(5AV)) abolishes the phosphorylation and activation on chromosomes. Both Bub1 and Bub1(5AV) support the checkpoint under an optimal condition for spindle checkpoint activation. However, Bub1, but not Bub1(5AV), supports the checkpoint at a relatively low concentration of nuclei or the microtubule inhibitor nocodazole. Similar to Bub1(5AV), Bub1 without the kinase domain (Bub1(DeltaKD)) is also partially compromised in its checkpoint function and in its ability to recruit other checkpoint proteins to kinetochores. This study suggests that activation of Bub1 at kinetochores enhances the efficiency of the spindle checkpoint and is probably important in maintaining the checkpoint toward late prometaphase when the cell contains only a few or a single unattached kinetochore.
引用
收藏
页码:3113 / 3121
页数:9
相关论文
共 34 条
[1]   Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint [J].
Abrieu, A ;
Magnaghi-Jaulin, L ;
Kahana, JA ;
Peter, M ;
Castro, A ;
Vigneron, S ;
Lorca, T ;
Cleveland, DW ;
Labbé, JC .
CELL, 2001, 106 (01) :83-93
[2]   Localization of the Drosophila checkpoint control protein Bub3 to the kinetochore requires Bub1 but not Zw10 or Rod [J].
Basu, J ;
Logarinho, E ;
Herrmann, S ;
Bousbaa, H ;
Li, ZX ;
Chan, GKT ;
Yen, TJ ;
Sunkel, CE ;
Goldberg, ML .
CHROMOSOMA, 1998, 107 (6-7) :376-385
[3]   Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC [J].
Chan, GKT ;
Jablonski, SA ;
Sudakin, V ;
Hittle, JC ;
Yen, TJ .
JOURNAL OF CELL BIOLOGY, 1999, 146 (05) :941-954
[4]   Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores [J].
Chen, RH ;
Shevchenko, A ;
Mann, M ;
Murray, AW .
JOURNAL OF CELL BIOLOGY, 1998, 143 (02) :283-295
[5]   BubR1 is essential for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad1 [J].
Chen, RH .
JOURNAL OF CELL BIOLOGY, 2002, 158 (03) :487-496
[6]   Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores [J].
Chen, RH ;
Waters, JC ;
Salmon, ED ;
Murray, AW .
SCIENCE, 1996, 274 (5285) :242-246
[7]   Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint [J].
Chung, EN ;
Chen, RH .
NATURE CELL BIOLOGY, 2003, 5 (08) :748-753
[8]   Spindle checkpoint requires Mad1-bound and Mad1-free Mad2 [J].
Chung, EN ;
Chen, RH .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (05) :1501-1511
[9]   Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling [J].
Cleveland, DW ;
Mao, YH ;
Sullivan, KF .
CELL, 2003, 112 (04) :407-421
[10]   Bub1p kinase activates the Saccharomyces cerevisiae spindle assembly checkpoint [J].
Farr, KA ;
Hoyt, MA .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (05) :2738-2747