Intrahelical arrangement in the integral membrane protein rhodopsin investigated by site-specific chemical cleavage and mass spectrometry

被引:31
作者
Gelasco, A
Crouch, RK
Knapp, DR [1 ]
机构
[1] Med Univ S Carolina, Dept Cell & Mol Pharmacol & Expt Therapeut, Charleston, SC 29425 USA
[2] Med Univ S Carolina, Dept Ophthalmol, Charleston, SC 29425 USA
关键词
D O I
10.1021/bi992736i
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Site-specific cleavage on the interhelical loop I on the cytoplasmic face of rhodopsin has been observed after activation of a Cu-phenanthroline tethered cleavage reagent attached on the cytoplasmic loop IV. The characterization of the reaction products by mass spectrometry, both of the membrane bound protein and of the CNBr-cleaved peptides, allows the site of cleavage to be determined precisely. The specific cleavage of the peptide bond between Q64 and H65 on loop I leaves the N-terminal peptide (M1-Q64) intact, confirmed by MALDI-MS detection of the two N-linked glycosyl groups near the N-terminus of rhodopsin. The limited extension of the tether side chain requires a interresidue distance between the cleavage site, Q64, and the site of ligand attachment, C316, of less than 12 Angstrom. Upon photoactivation of the receptor, no change in the cleavage pattern is observed; however, a simulated Meta II intermediate activation state indicates a much more complex cleavage pattern. The development of this cleavage method, previously used primarily as a "chemical nuclease", in combination with mass spectrometry, may provide a powerful method on membrane protein conformation studies that can be used to complement other biophysical characterizations.
引用
收藏
页码:4907 / 4914
页数:8
相关论文
共 40 条
[1]   A distance measurement between specific sites on the cytoplasmic surface of bovine rhodopsin in rod outer segment disk membranes [J].
Albert, AD ;
Watts, A ;
Spooner, P ;
Groebner, G ;
Young, J ;
Yeagle, PL .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1997, 1328 (01) :74-82
[2]   Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: A site-directed spin-labeling study [J].
Altenbach, C ;
Cai, KW ;
Khorana, HG ;
Hubbell, WL .
BIOCHEMISTRY, 1999, 38 (25) :7931-7937
[3]   Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: A site-directed spin-labeling study [J].
Altenbach, C ;
Yang, K ;
Farrens, DL ;
Farahbakhsh, ZT ;
Khorana, HG ;
Hubbell, WL .
BIOCHEMISTRY, 1996, 35 (38) :12470-12478
[4]   Structural features and light-dependent changes in the sequence 59-75 connecting helices I and II in rhodopsin: A site-directed spin-labeling study [J].
Altenbach, C ;
Klein-Seetharaman, J ;
Hwa, J ;
Khorana, HG ;
Hubbell, WL .
BIOCHEMISTRY, 1999, 38 (25) :7945-7949
[5]   STRUCTURE AND FUNCTION OF RECEPTORS COUPLED TO G-PROTEINS [J].
BALDWIN, JM .
CURRENT OPINION IN CELL BIOLOGY, 1994, 6 (02) :180-190
[6]  
Ball LE, 1998, PROTEIN SCI, V7, P758
[7]  
Barnidge DR, 1997, PROTEIN SCI, V6, P816
[8]  
BATEMAN RC, 1985, J BIOL CHEM, V260, P9088
[9]   NOMENCLATURE FOR PEPTIDE FRAGMENT IONS (POSITIVE-IONS) [J].
BIEMANN, K .
METHODS IN ENZYMOLOGY, 1990, 193 :886-887
[10]   PEPTIDE AMIDATION [J].
BRADBURY, AF ;
SMYTH, DG .
TRENDS IN BIOCHEMICAL SCIENCES, 1991, 16 (03) :112-115