LHC signals for a SuperUnified theory of Dark Matter

被引:262
作者
Arkani-Hamed, Nima [1 ]
Weiner, Neal [2 ]
机构
[1] Inst Adv Study, Sch Nat Sci, Einstein Dr, Princeton, NJ 08540 USA
[2] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2008年 / 12期
关键词
Cosmology of Theories beyond the SM; Supersymmetry Breaking; Gauge Symmetry;
D O I
10.1088/1126-6708/2008/12/104
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A new theory of WIMP Dark Matter has been proposed, motivated directly by striking Data from the PAMELA and ATIC collaborations. The WIMP is taken to be charged under a hidden gauge symmetry G(Dark), broken near the GeV scale; this also provides the necessary ingredients for the "exciting" and "inelastic" Dark Matter interpretations of the INTEGRAL and DAMA signals. In this short note we point out the consequences of the most straightforward embedding of this simple picture within low-energy SUSY, in which G(Dark) breaking at the GeV scale arises naturally through radiative corrections, or Planck-suppressed operators. The theory predicts major additions to SUSY signals at the LHC. A completely generic prediction is that G(Dark) particles can be produced in cascade decays of MSSM superpartners, since these end with pairs of MSSM LSP's that in turn decay into the true LSP and other particles in the dark sector. In turn, the lightest GeV-scale dark Higgses and gauge bosons eventually decay back into light SM states, and dominantly into leptons. Therefore, a large fraction of all SUSY events will contain at least two "lepton jets": collections of n >= 2 leptons, with small angular separations and GeV scale invariant masses. Furthermore, if the Dark Matter sector is directly charged under the Standard Model, the success of gauge coupling unification implies the presence of new long-lived colored particles that can be copiously produced at the LHC.
引用
收藏
页数:20
相关论文
共 46 条
[1]  
ADRIANI O, ARXIV08104995
[2]   Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01 [J].
Aguilar, M. ;
Alcaraz, J. ;
Allaby, J. ;
Alpat, B. ;
Ambrosi, G. ;
Anderhub, H. ;
Ao, L. ;
Arefiev, A. ;
Azzarello, P. ;
Baldini, L. ;
Basile, M. ;
Barancourt, D. ;
Barao, F. ;
Barbier, G. ;
Barreira, G. ;
Battiston, R. ;
Becker, R. ;
Becker, U. ;
Bellagamba, L. ;
Bene, P. ;
Berdugo, J. ;
Berges, R. ;
Bertucci, B. ;
Biland, A. ;
Blasko, S. ;
Boella, G. ;
Boschini, M. ;
Bourquin, M. ;
Brocco, L. ;
Bruni, G. ;
Buenerd, M. ;
Burger, J. D. ;
Burger, W. J. ;
Cai, X. D. ;
Camps, C. ;
Cannarsa, P. ;
Capell, M. ;
Cardano, F. ;
Casadei, D. ;
Casaus, J. ;
Castellini, G. ;
Chang, Y. H. ;
Chen, H. F. ;
Chen, H. S. ;
Chen, Z. G. ;
Chernoplekov, N. A. ;
Chiueh, T. H. ;
Cho, K. ;
Choi, M. J. ;
Choi, Y. Y. .
PHYSICS LETTERS B, 2007, 646 (04) :145-154
[3]  
AHARONIAN FA, 1995, ASTRON ASTROPHYS, V294, pL41
[4]  
ARKANIHAMED N, ARXIV08100713
[5]   Stopping gluinos [J].
Arvanitaki, A. ;
Dimopoulos, S. ;
Pierce, A. ;
Rajendran, S. ;
Wacker, J. .
PHYSICAL REVIEW D, 2007, 76 (05)
[6]   Measurements of the cosmic-ray positron fraction from 1 to 50 GeV [J].
Barwick, SW ;
Beatty, JJ ;
Bhattacharyya, A ;
Bower, CR ;
Chaput, CJ ;
Coutu, S ;
deNolfo, GA ;
Knapp, J ;
Lowder, DM ;
McKee, S ;
Muller, D ;
Musser, JA ;
Nutter, SL ;
Schneider, E ;
Swordy, SP ;
Tarle, G ;
Tomasch, AD ;
Torbet, E .
ASTROPHYSICAL JOURNAL, 1997, 482 (02) :L191-L194
[7]   First results from DAMA/LIBRA and the combined results with DAMA/NaI [J].
Bernabei, R. ;
Belli, P. ;
Cappella, F. ;
Cerulli, R. ;
Dai, C. J. ;
d'Angelo, A. ;
He, H. L. ;
Incicchitti, A. ;
Kuang, H. H. ;
Ma, J. M. ;
Montecchia, F. ;
Nozzoli, F. ;
Prosperi, D. ;
Sheng, X. D. ;
Ye, Z. P. .
EUROPEAN PHYSICAL JOURNAL C, 2008, 56 (03) :333-355
[8]  
BOEHM, 2004, PHYS REV D, V69, P1302
[9]   Scalar dark matter candidates [J].
Boem, C ;
Fayet, P .
NUCLEAR PHYSICS B, 2004, 683 (1-2) :219-263
[10]   Probing MeV dark matter at low-energy e+e- colliders [J].
Borodatchenkova, N ;
Choudhury, D ;
Drees, M .
PHYSICAL REVIEW LETTERS, 2006, 96 (14)