Selecting the number of bins in a histogram: A decision theoretic approach

被引:24
作者
He, K
Meeden, G
机构
[1] UNIV KANSAS,DEPT MATH,LAWRENCE,KS 66045
[2] UNIV MINNESOTA,SCH STAT,MINNEAPOLIS,MN 55455
关键词
histogram; Bayesian bootstrap; stepwise Bayes; admissibility; non-informative Bayes and entropy;
D O I
10.1016/S0378-3758(96)00142-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note we consider the problem of, given a sample, selecting the number of bins in a histogram. A loss function is introduced which reflects the idea that smooth distributions should have fewer bins than rough distributions. A stepwise Bayes rule, based on the Bayesian bootstrap, is found and is shown to be admissible. Some simulation results are presented to show how the rule works in practice.
引用
收藏
页码:49 / 59
页数:11
相关论文
共 11 条
[1]   A COMPLETE CLASS THEOREM FOR STATISTICAL PROBLEMS WITH FINITE-SAMPLE SPACES [J].
BROWN, LD .
ANNALS OF STATISTICS, 1981, 9 (06) :1289-1300
[2]   STEPWISE BAYESIAN PROCEDURE [J].
HSUAN, FC .
ANNALS OF STATISTICS, 1979, 7 (04) :860-868
[3]   ADMISSIBLE ESTIMATORS FOR CERTAIN FIXED SAMPLE BINOMIAL PROBLEMS [J].
JOHNSON, BMK .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (05) :1579-&
[4]   SOME ADMISSIBLE NONPARAMETRIC AND RELATED FINITE POPULATION-SAMPLING ESTIMATORS [J].
MEEDEN, G ;
GHOSH, M ;
VARDEMAN, S .
ANNALS OF STATISTICS, 1985, 13 (02) :811-817
[5]  
MEEDEN G, 1981, ANN STAT, V9, P296
[6]   THE BAYESIAN BOOTSTRAP [J].
RUBIN, DB .
ANNALS OF STATISTICS, 1981, 9 (01) :130-134
[7]  
RUDEMO M, 1982, SCAND J STAT, V9, P65
[8]  
SCOOT DW, 1979, BIOMETRIKA, V66, P605
[9]   OVERSMOOTHED NONPARAMETRIC DENSITY ESTIMATES [J].
TERRELL, GR ;
SCOTT, DW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1985, 80 (389) :209-214
[10]   THE MAXIMAL SMOOTHING PRINCIPLE IN DENSITY-ESTIMATION [J].
TERRELL, GR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :470-477