Modelling and bioinformatics studies of the human Kappa-class glutathione transferase predict a novel third glutathione transferase family with similarity to prokaryotic 2-hydroxychromene-2-carboxylate isomerases

被引:70
作者
Robinson, A
Huttley, GA
Booth, HS
Board, PG
机构
[1] Australian Natl Univ, John Curtin Sch Med Res, Canberra, ACT 2601, Australia
[2] Australian Natl Univ, Ctr Bioinformat Sci, JCSMR, Canberra, ACT 2601, Australia
[3] Australian Natl Univ, Inst Math Sci, Canberra, ACT 2601, Australia
关键词
disulphide-bond-forming (Dsb) oxidoreductase; evolution; glutathione transferase (GST); human; 2-hydroxychromene-2-carboxylate (HCCA) isomerase; Kappa;
D O I
10.1042/BJ20031656
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Kappa class of GSTs (glutathione transferases) comprises soluble enzymes originally isolated from the mitochondrial matrix of rats. We have characterized a Kappa class cDNA from human breast. The cDNA is derived from a single gene comprising eight exons and seven introns located on chromosome 7q34-35. Recombinant hGSTK1-1 was expressed in Escherichia coli as a homodimer (subunit molecular mass similar to25.5 kDa). Significant glutathione-conjugating activity was found only with the model substrate CDNB (1-chloro-2,4-ditnitrobenzene). Hyperbolic kinetics were obtained for GSH (parameters: K-m(app), 3.3 +/- 0.95 mM; V-max(app) 21.4 +/- 1.8 mumol/min per mg of enzyme), while sigmoidal kinetics were obtained for CDNB; (parameters: S-0.5(app), 1.5 +/- 1.0 mM; V-max(app), 40.3 +/- 0.3 mumol/min per mg of enzyme; Hill coefficient, 1.3), reflecting low affinities for both substrates. Sequence analyses, homology modelling and secondary structure predictions show that hGSTK1 has (a) most similarity to bacterial HCCA (2-hydroxychromene-2-carboxylate) isomerases and (b) a predicted C-terminal domain structure that is almost identical to that of bacterial disulphide-bond-forming DsbA oxidoreductase (root mean square deviation 0.5-0.6 Angstrom). The structures of hGSTK1 and HCCA isomerase are predicted to possess a thioredoxin fold with a polyhelical domain (alpha(x)) embedded between the beta-strands (betaalphabetaalpha(x)betabetaalpha, where the underlined elements represent the N and C motifs of the thioredoxin fold), as occurs in the bacterial disulphide-bond-forming oxidoreductases. This is in contrast with the cytosolic GSTs, where the helical domain occurs exclusively at the C-terminus (betaalphabetaalphabetabetaalphaalpha(x)) Although hGSTK1-1 catalyses some typical GST reactions, we propose that it is structurally distinct from other classes of cytosolic GSTs. The present study suggests that the Kappa class may have arisen in prokaryotes well before the divergence of the cytosolic GSTs.
引用
收藏
页码:541 / 552
页数:12
相关论文
共 43 条
[1]   Regulation of JNK signaling by GSTp [J].
Adler, V ;
Yin, ZM ;
Fuchs, SY ;
Benezra, M ;
Rosario, L ;
Tew, KD ;
Pincus, MR ;
Sardana, M ;
Henderson, CJ ;
Wolf, CR ;
Davis, RJ ;
Ronai, Z .
EMBO JOURNAL, 1999, 18 (05) :1321-1334
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Iterated profile searches with PSI-BLAST - a tool for discovery in protein databases [J].
Altschul, SF ;
Koonin, EV .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (11) :444-447
[4]   Gene duplication and the evolution of group II chaperonins: Implications for structure and function [J].
Archibald, JM ;
Blouin, C ;
Doolittle, WF .
JOURNAL OF STRUCTURAL BIOLOGY, 2001, 135 (02) :157-169
[5]   Extensive feature detection of N-terminal protein sorting signals [J].
Bannai, H ;
Tamada, Y ;
Maruyama, O ;
Nakai, K ;
Miyano, S .
BIOINFORMATICS, 2002, 18 (02) :298-305
[6]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[7]  
Board PG, 1997, BIOCHEM J, V328, P929
[8]   THE NUCLEAR-MAGNETIC-RESONANCE SOLUTION STRUCTURE OF THE MIXED DISULFIDE BETWEEN ESCHERICHIA-COLI GLUTAREDOXIN(C14S) AND GLUTATHIONE [J].
BUSHWELLER, JH ;
BILLETER, M ;
HOLMGREN, A ;
WUTHRICH, K .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 235 (05) :1585-1597
[9]   The crystal structure of a GroEL/peptide complex: Plasticity as a basis for substrate diversity [J].
Chen, LL ;
Sigler, PB .
CELL, 1999, 99 (07) :757-768
[10]   Glutathione S-transferase Mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1 [J].
Cho, SG ;
Lee, YH ;
Park, HS ;
Ryoo, K ;
Kang, KW ;
Park, J ;
Eom, SJ ;
Kim, MJ ;
Chang, TS ;
Choi, SY ;
Shim, J ;
Kim, Y ;
Dong, MS ;
Lee, MJ ;
Kim, SG ;
Ichijo, H ;
Choi, EJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (16) :12749-12755