Proximal minimization methods with generalized Bregman functions

被引:183
作者
Kiwiel, KC
机构
[1] Systems Research Institute, 01-447 Warsaw
关键词
convex programming; nondifferentiable optimization; proximal methods; Bregman functions; B-functions;
D O I
10.1137/S0363012995281742
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider methods for minimizing a convex function f that generate a sequence {x(k)} by taking x(k+1) to be an approximate minimizer of f(x) + D-h(x,x(k))/c(k), where c(k) > 0 and D-h is the D-function of a Bregman function h. Extensions are made to B-functions that generalize Bregman functions and cover more applications. Convergence is established under criteria amenable to implementation. Applications are made to nonquadratic multiplier methods for nonlinear programs.
引用
收藏
页码:1142 / 1168
页数:27
相关论文
共 47 条
[1]  
[Anonymous], 1983, INTRO OPTIMIZATION
[2]  
AUSLENDER A, 1986, MATH PROGRAMMING STU, V30, P102
[3]  
BAUSCHKE HH, 1997, IN PRESS J CONVEX AN, V4
[4]  
BENTAL A, 1992, 992 OPT LAB
[5]  
Bertsekas D. P., 2019, Reinforcement learning and optimal control
[6]   PARTIAL PROXIMAL MINIMIZATION ALGORITHMS FOR CONVEX-PROGRAMMING [J].
BERTSEKAS, DP ;
TSENG, P .
SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (03) :551-572
[7]  
Bregman L.M., 1967, USSR Computational Mathematics and Mathematical Physics, V7, P200
[8]  
BREITFELD MG, 1994, 1294 RRR RUTG U RUTC
[9]  
BREITFELD MG, 1993, 1793 RRR RUTCOR RUTG
[10]   WEAK SHARP MINIMA IN MATHEMATICAL-PROGRAMMING [J].
BURKE, JV ;
FERRIS, MC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (05) :1340-1359