A fast and accurate multilevel inversion of the radon transform

被引:37
作者
Brandt, A [1 ]
Mann, J [1 ]
Brodski, M [1 ]
Galun, M [1 ]
机构
[1] Weizmann Inst Sci, Dept Appl Math & Comp Sci, IL-76100 Rehovot, Israel
关键词
radon transform; inversion of the Radon transform; computed tomography; convolution backprojection; multilevel; Fourier-domain postprocessing;
D O I
10.1137/S003613999732425X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A number of imaging technologies reconstruct an image function from its Radon projection using the convolution backprojection method. The convolution is an O(N-2 log N) algorithm, where the image consists of N x N pixels, while the backprojection is an O(N-3) algorithm, thus constituting the major computational burden of the convolution backprojection method. An O(N-2 log N) multilevel backprojection method is presented here. When implemented with a Fourier-domain postprocessing technique, also presented here, the resulting image quality is similar or superior to the image quality of the classical backprojection technique.
引用
收藏
页码:437 / 462
页数:26
相关论文
共 33 条
[1]   ON THE POSSIBILITY OF DIRECT FOURIER RECONSTRUCTION FROM DIVERGENT-BEAM PROJECTIONS [J].
ALLINEY, S ;
MATEJ, S ;
BAJLA, I .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1993, 12 (02) :173-181
[2]   Fast calculation of multiple line integrals [J].
Brandt, A ;
Dym, J .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (04) :1417-1429
[3]   MULTILEVEL COMPUTATIONS OF INTEGRAL-TRANSFORMS AND PARTICLE INTERACTIONS WITH OSCILLATORY KERNELS [J].
BRANDT, A .
COMPUTER PHYSICS COMMUNICATIONS, 1991, 65 (1-3) :24-38
[4]   MULTILEVEL MATRIX MULTIPLICATION AND FAST SOLUTION OF INTEGRAL-EQUATIONS [J].
BRANDT, A ;
LUBRECHT, AA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 90 (02) :348-370
[5]  
BRANDT A, 1992, SER APPL M, V1, P1
[6]  
BRANDT A, 1997, WIGC6 WEIZM I SCI
[7]  
BRANDT A, Patent No. 97108722
[8]  
BRANDT A, 1997, ELECT T NUM ANAL, V6
[9]  
BRANDT A, Patent No. 08659595
[10]  
BRANDT A, 1995, FAST ACCURATE RADON