High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K

被引:104
作者
Diehl, L.
Bour, D.
Corzine, S.
Zhu, J.
Hofler, G.
Loncar, M.
Troccoli, M.
Capasso, Federico
机构
[1] Harvard Univ, Div Engn & Appl Sci, Cruft Lab 310, Cambridge, MA 02138 USA
[2] Agilent Labs, Palo Alto, CA 94304 USA
关键词
D O I
10.1063/1.2203964
中图分类号
O59 [应用物理学];
学科分类号
摘要
High-power quantum cascade lasers (QCLs) working in continuous wave (cw) above 400 K are presented. The material was grown by low-pressure metal organic vapor-phase epitaxy and processed into narrow buried heterostructure lasers. A cw output power of 204 mW was obtained at 300 K with an 8.38 mu m wavelength, 3 mm long and 7.5 mu m wide coated laser. The device operates in cw mode above 400 K, which exceeds the previous maximum cw temperature operation of QCLs by approximately 60 K. Preliminary reliability data obtained by accelerated aging tests indicate a remarkable robustness of the lasers. (c) 2006 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 12 条
[1]   Beam steering in high-power CW quantum-cascade lasers [J].
Bewley, WW ;
Lindle, JR ;
Kim, CS ;
Vurgaftman, I ;
Meyer, JR ;
Evans, AJ ;
Yu, JS ;
Slivken, S ;
Razeghi, M .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2005, 41 (06) :833-841
[2]   Metalorganic vapor-phase epitaxy of room-temperature, low-threshold InGaAs/AlInAs quantum cascade lasers [J].
Bour, D ;
Troccoli, M ;
Capasso, F ;
Corzine, S ;
Tandon, A ;
Mars, D ;
Höfler, G .
JOURNAL OF CRYSTAL GROWTH, 2004, 272 (1-4) :526-530
[3]   Continuous-wave operation of λ∼4.8 μm quantum-cascade lasers at room temperature [J].
Evans, A ;
Yu, JS ;
Slivken, S ;
Razeghi, M .
APPLIED PHYSICS LETTERS, 2004, 85 (12) :2166-2168
[4]   High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers [J].
Evans, A ;
Yu, JS ;
David, J ;
Doris, L ;
Mi, K ;
Slivken, S ;
Razeghi, M .
APPLIED PHYSICS LETTERS, 2004, 84 (03) :314-316
[5]   Continuous wave operation of a 9.3 μm quantum cascade laser on a Peltier cooler [J].
Hofstetter, D ;
Beck, M ;
Aellen, T ;
Faist, J ;
Oesterle, U ;
Ilegems, M ;
Gini, E ;
Melchior, H .
APPLIED PHYSICS LETTERS, 2001, 78 (14) :1964-1966
[6]   Chemical sensors based on quantum cascade lasers [J].
Kosterev, AA ;
Tittel, FK .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :582-591
[7]   Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser [J].
Maulini, R ;
Yarekha, DA ;
Bulliard, JM ;
Giovannini, M ;
Faist, J .
OPTICS LETTERS, 2005, 30 (19) :2584-2586
[8]   Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer [J].
Nelson, DD ;
Shorter, JH ;
McManus, JB ;
Zahniser, MS .
APPLIED PHYSICS B-LASERS AND OPTICS, 2002, 75 (2-3) :343-350
[9]   Ridge-width dependence on high-temperature continuous-wave quantum-cascade laser operation [J].
Slivken, S ;
Yu, JS ;
Evans, A ;
David, J ;
Doris, L ;
Razeghi, M .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (03) :744-746
[10]   Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy [J].
Troccoli, M ;
Corzine, S ;
Bour, D ;
Zhu, J ;
Assayag, O ;
Diehl, L ;
Lee, BG ;
Höfler, G ;
Capasso, E .
ELECTRONICS LETTERS, 2005, 41 (19) :1059-1060