Crystal structure of human otubain 2

被引:73
作者
Nanao, MH
Tcherniuk, SO
Chroboczek, J
Dideberg, O
Dessen, A
Balakirev, MY
机构
[1] Univ Grenoble 1, CNRS, CEA, Inst Biol Struct JP Ebel,Lab Biophys Mol, F-38027 Grenoble, France
[2] Univ Grenoble 1, CNRS, CEA, Lab Cristallog Macromol, F-38027 Grenoble, France
[3] CEA, Dept Reponse & Dynam Cellulaires, Lab Biopuces, F-38054 Grenoble, France
关键词
deubiquitylating enzyme; OTU domain; cysteine proteases; otubain; ubiquitin;
D O I
10.1038/sj.embor.7400201
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ubiquitylation, the modification of cellular proteins by the covalent attachment of ubiquitin, is critical for diverse biological processes including cell cycle progression, signal transduction and stress response. This process can be reversed and regulated by a group of proteases called deubiquitylating enzymes (DUBs). Otubains are a recently identified family of DUBs that belong to the ovarian tumour (OTU) superfamily of proteins. Here, we report the first crystal structure of an OTU superfamily protein, otubain 2, at 2.1 Angstrom resolution and propose a model for otubain ubiquitin binding on the basis of other DUB structures. Although otubain 2 is a member of the cysteine protease superfamily of folds, its crystal structure shows a novel fold for DUBs. Moreover, the active-site cleft is sterically occluded by a novel loop conformation resulting in an oxyanion hole, which consists uniquely of backbone amides, rather than the composite backbone/side-chain substructures seen in other DUBs and cysteine proteases. Furthermore, the residues that orient and stabilize the active-site histidine of otubain 2 are different from other cysteine proteases. This reorganization of the active-site topology provides a possible explanation for the low turnover and substrate specificity of the otubains.
引用
收藏
页码:783 / 788
页数:6
相关论文
共 36 条
[1]   Ubiquitin interactions of NZF zinc fingers [J].
Alam, SL ;
Sun, J ;
Payne, M ;
Welch, BD ;
Blake, BK ;
Davis, DR ;
Meyer, HH ;
Emr, SD ;
Sundquist, WI .
EMBO JOURNAL, 2004, 23 (07) :1411-1421
[2]   JAMM: A metalloprotease-like zinc site in the proteasome and signalosome [J].
Ambroggio, XI ;
Rees, DC ;
Deshaies, RJ .
PLOS BIOLOGY, 2004, 2 (01) :113-119
[3]   Otubains: a new family of cysteine proteases in the ubiquitin pathway [J].
Balakirev, MY ;
Tcherniuk, SO ;
Jaquinod, M ;
Chroboczek, J .
EMBO REPORTS, 2003, 4 (05) :517-522
[4]   Regulatory functions of ubiquitination in the immune system [J].
Ben-Neriah, Y .
NATURE IMMUNOLOGY, 2002, 3 (01) :20-26
[5]   A20 and A20-binding proteins as cellular inhibitors of nuclear factor-κB-dependent gene expression and apoptosis [J].
Beyaert, R ;
Heyninck, K ;
Van Huffel, S .
BIOCHEMICAL PHARMACOLOGY, 2000, 60 (08) :1143-1151
[6]  
BLEVINS RA, 1985, J BIOL CHEM, V260, P4264
[7]   Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme [J].
Borodovsky, A ;
Ovaa, H ;
Kolli, N ;
Gan-Erdene, T ;
Wilkinson, KD ;
Ploegh, HL ;
Kessler, BM .
CHEMISTRY & BIOLOGY, 2002, 9 (10) :1149-1159
[8]   The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity [J].
Burnett, B ;
Li, FS ;
Pittman, RN .
HUMAN MOLECULAR GENETICS, 2003, 12 (23) :3195-3205
[9]  
Collaborative Computational Project, ACTA CRYSTALLOGR D, V50, P760
[10]   Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1 [J].
Cope, GA ;
Suh, GSB ;
Aravind, L ;
Schwarz, SE ;
Zipursky, SL ;
Koonin, EV ;
Deshaies, RJ .
SCIENCE, 2002, 298 (5593) :608-611