The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis

被引:200
作者
Zhang, Zhiyong [1 ]
Ober, James A. [1 ]
Kliebenstein, Daniel J. [1 ]
机构
[1] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
关键词
D O I
10.1105/tpc.105.039602
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glucosinolates are sulfur-rich plant secondary metabolites whose breakdown products have a wide range of biological activities in plant-herbivore and plant-pathogen interactions and anticarcinogenic properties. In Arabidopsis thaliana, hydrolysis by the enzyme, myrosinase, produces bioactive nitriles, epithionitriles, or isothiocyanates depending upon the plant's genotype and the glucosinolate's structure. A major determinant of this structural specificity is the epithiospecifier locus (ESP), whose protein causes the formation of epithionitriles and nitriles. A quantitative trait locus (QTL) on chromosome 3 epistatically affects nitrile formation in combination with ESP; this QTL has been termed EPITHIOSPECIFIER MODIFIER1 (ESM1). We identified a myrosinase-associated protein as the ESM1 QTL in Arabidopsis using map-based cloning with recombinant inbred lines, natural variation transcriptomic analysis, and metabolic profiling. In planta and in vitro analyses with natural ESM1 alleles, ESM1 knockouts, and overexpression lines show that ESM1 represses nitrile formation and favors isothiocyanate production. The glucosinolate hydrolysis profile change influenced by ESM1 is associated with the ability to deter herbivory by Trichoplusia ni. This gene could provide unique approaches toward improving human nutrition.
引用
收藏
页码:1524 / 1536
页数:13
相关论文
共 49 条
[1]   Production of DNA strand breaks by N-nitrosodimethylamine and 2-amino-3-methylimidazo[4,5-f]quinoline in THLE cells expressing human CYP isoenzymes and inhibition by sulforaphane [J].
Barceló, S ;
Macé, K ;
Pfeifer, AMA ;
Chipman, JK .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 1998, 402 (1-2) :111-120
[2]   Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species [J].
Bent, AF .
PLANT PHYSIOLOGY, 2000, 124 (04) :1540-1547
[3]   Isolation of the epithiospecifier protein from oil-rape (Brassica napus ssp oleifera) seed and its characterization [J].
Bernardi, R ;
Negri, A ;
Ronchi, S ;
Palmieri, S .
FEBS LETTERS, 2000, 467 (2-3) :296-298
[4]  
Bones AM, 1996, PHYSIOL PLANTARUM, V97, P194, DOI 10.1111/j.1399-3054.1996.tb00497.x
[5]   Toxicity of isothiocyanates produced by glucosinolates in brassicaceae species to black ville weevil eggs [J].
Borek, V ;
Elberson, LR ;
McCaffrey, JP ;
Morra, MJ .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 1998, 46 (12) :5318-5323
[6]  
Chew F.S., 1988, P81
[7]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[8]   The secondary metabolism of Arabidopsis thaliana:: growing like a weed [J].
D'Auria, JC ;
Gershenzon, J .
CURRENT OPINION IN PLANT BIOLOGY, 2005, 8 (03) :308-316
[9]   α-keto acid elongation and glucosinolate biosynthesis in Arabidopsis thaliana [J].
de Quiros, HC ;
Magrath, R ;
McCallum, D ;
Kroymann, J ;
Scnabelrauch, D ;
Mitchell-Olds, T ;
Mithen, R .
THEORETICAL AND APPLIED GENETICS, 2000, 101 (03) :429-437
[10]   The chemical diversity and distribution of glucosinolates and isothiocyanates among plants [J].
Fahey, JW ;
Zalcmann, AT ;
Talalay, P .
PHYTOCHEMISTRY, 2001, 56 (01) :5-51