Expression analysis suggests novel roles for the plastidic phosphate transporter Pht2;1 in auto- and heterotrophic tissues in potato and Arabidopsis

被引:73
作者
Rausch, C
Zimmermann, P
Amrhein, N
Bucher, M
机构
[1] ETH, Inst Plant Sci, Plant Biochem & Physiol Grp, Expt Stn, CH-8315 Lindau, Switzerland
[2] ETH, Inst Plant Sci, Regulatory Networks Plant Biotechnol, ETH Zentrum, CH-8092 Zurich, Switzerland
关键词
phosphate transporter; plastid; potato; Arabidopsis thaliana; microarray; cluster analysis;
D O I
10.1111/j.1365-313X.2004.02106.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
A cDNA encoding Pht2;1 from potato, a new member of the plant Pht2 gene family of low-affinity orthophosphate (Pi) transporters, was isolated. The expression pattern of the corresponding gene as well as its ortholog from Arabidopsis was analyzed and the encoded proteins were localized in the two plants. Pht2;1 expression is strongly upregulated by light in potato and Arabidopsis leaf tissue. RNA gel blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), promoter/GUS, and protein/green fluorescent protein (GFP) fusion studies, respectively, indicate that the gene is expressed in both auto- and heterotrophic tissues and its encoded protein is localized to the plastids. The similar patterns of Pht2;1 gene regulation in potato and Arabidopsis prompted us to screen publicly available gene expression data from 228 Arabidopsis oligonucleotide microarrays covering 83 different experimental conditions. Modulation of Pht2;1 transcript levels was overall moderate, except for a limited number of experimental conditions where Pht2;1 mRNA concentrations varied between 2- and 3.7-fold. Overall, these analyses suggest involvement of the Pht2;1 protein in cell wall metabolism in young, rapidly growing tissues, independent of other Pi transporters such as the high-affinity Solanum tuberosum Pi transporter 1 (StPT1). Cluster analysis allowed identification of colinear or antiparallel expression profiles of a small set of genes involved in post-translational regulation, and photosynthetic carbon metabolism. These data give clues about the possible biological function of Pht2;1 and shed light on the complex web of interactions in which Pht2;1 could play a role.
引用
收藏
页码:13 / 28
页数:16
相关论文
共 60 条
[1]   TRANSIENT TRANSFORMATION OF ARABIDOPSIS LEAF PROTOPLASTS - A VERSATILE EXPERIMENTAL SYSTEM TO STUDY GENE-EXPRESSION [J].
ABEL, S ;
THEOLOGIS, A .
PLANT JOURNAL, 1994, 5 (03) :421-427
[2]   Extensive feature detection of N-terminal protein sorting signals [J].
Bannai, H ;
Tamada, Y ;
Maruyama, O ;
Nakai, K ;
Miyano, S .
BIOINFORMATICS, 2002, 18 (02) :298-305
[3]   BINARY AGROBACTERIUM VECTORS FOR PLANT TRANSFORMATION [J].
BEVAN, M .
NUCLEIC ACIDS RESEARCH, 1984, 12 (22) :8711-8721
[4]   CIRCULATION PATTERNS FOR PHOSPHORUS, SULFUR AND CALCIUM IN THE BEAN PLANT [J].
BIDDULPH, O ;
BIDDULPH, S ;
CORY, R ;
KOONTZ, H .
PLANT PHYSIOLOGY, 1958, 33 (04) :293-300
[5]  
Buchanan BB., 2015, Biochemistry and Molecular Biology of Plants
[6]   Dissection of the ozone-induced calcium signature [J].
Clayton, H ;
Knight, MR ;
Knight, H ;
McAinsh, MR ;
Hetherington, AM .
PLANT JOURNAL, 1999, 17 (05) :575-579
[7]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[8]   Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis [J].
Daram, P ;
Brunner, S ;
Rausch, C ;
Steiner, C ;
Amrhein, N ;
Bucher, M .
PLANT CELL, 1999, 11 (11) :2153-2166
[9]   Functional analysis and cell-specific expression of a phosphate transporter from tomato [J].
Daram, P ;
Brunner, S ;
Persson, BL ;
Amrhein, N ;
Bucher, M .
PLANTA, 1998, 206 (02) :225-233
[10]   Arabidopsis ALF5, a multidrug efflux transporter gene family member, confers resistance to toxins [J].
Diener, AC ;
Gaxiola, RA ;
Fink, GR .
PLANT CELL, 2001, 13 (07) :1625-1637