Single-stranded DNA breaks adjacent to cytosines occur during Ig gene class switch recombination

被引:20
作者
Arudchandran, A [1 ]
Bernstein, RM [1 ]
Max, EE [1 ]
机构
[1] US FDA, Ctr Drug Evaluat & Res, Div Therapeut Prot, Off Biotechnol Prod, Bethesda, MD 20892 USA
关键词
D O I
10.4049/jimmunol.173.5.3223
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Class switch recombination (CSR) at the DNA level underlies ability of B lymphocytes to switch from expressing IgM to expressing IgG, IgA, or IgE. The mechanism of CSR is largely unknown, but it is clear that CSR is stimulated by T cell signals and is mediated in part by activation-induced deaminase (AID), an enzyme that is also required for somatic hypermutation of Ig genes. In one current model, AID is proposed to initiate CSR by deaminating cytosines in the unpaired nontemplate, strand of DNA displaced from its complementary strand by the "sterile" RNA transcript across the switch region. We have used LM-PCR to analyze single-strand breaks in CH12F3-2, a murine cell line that switches in vitro to IgA expression. In contrast to the above model, we have detected CSR-associated ssDNA breaks in the template strand of the H chain a switch region, the strand thought to be complexed with RNA. Most breaks are adjacent to cytosines, consistent with mediation by AID, and occur within the novel consensus sequence C*AG, which occurs much more frequently on the template strand than on the putatively displaced nontemplate strand. These results suggest that AID may target the DNA strand bound to RNA, perhaps resembling APOBEC-3G, a cytosine deaminase related to AID that inhibits HIV replication by mutating viral DNA. Furthermore, the absence of detectable breaks in the nontemplate strand within the DNA segment under study suggests that the two DNA strands are handled differently in the generation or processing of strand breaks.
引用
收藏
页码:3223 / 3229
页数:7
相关论文
共 36 条
[1]  
ARAKAWA H, 1993, J BIOL CHEM, V268, P4651
[2]   Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1-mutant mice [J].
Bardwell, PD ;
Woo, CJ ;
Wei, KC ;
Li, ZQ ;
Martin, A ;
Sack, SZ ;
Parris, T ;
Edelmann, W ;
Scharff, MD .
NATURE IMMUNOLOGY, 2004, 5 (02) :224-229
[3]   C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion [J].
Barreto, V ;
Reina-San-Martin, B ;
Ramiro, AR ;
McBride, KM ;
Nussenzweig, MC .
MOLECULAR CELL, 2003, 12 (02) :501-508
[4]   Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase [J].
Bransteitter, R ;
Pham, P ;
Scharff, MD ;
Goodman, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :4102-4107
[5]   Ku80 is required for immunoglobulin isotype switching [J].
Casellas, R ;
Nussenzweig, A ;
Wuerffel, R ;
Pelanda, R ;
Reichlin, A ;
Suh, H ;
Qin, XF ;
Besmer, E ;
Kenter, A ;
Rajewsky, K ;
Nussenzweig, MC .
EMBO JOURNAL, 1998, 17 (08) :2404-2411
[6]   The block in immunoglobulin class switch recombination caused by activation-induced cytidine deaminase deficiency occurs prior to the generation of DNA double strand breaks in switch μ region [J].
Catalan, N ;
Selz, F ;
Imai, K ;
Revy, P ;
Fischer, A ;
Durandy, A .
JOURNAL OF IMMUNOLOGY, 2003, 171 (05) :2504-2509
[7]   Transcription-targeted DNA deamination by the AID antibody diversification enzyme [J].
Chaudhuri, J ;
Tian, M ;
Khuong, C ;
Chua, K ;
Pinaud, E ;
Alt, FW .
NATURE, 2003, 422 (6933) :726-730
[8]   Variable deletion and duplication at recombination junction ends: Implication for staggered double-strand cleavage in class-switch recombination [J].
Chen, XC ;
Kinoshita, K ;
Honjo, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) :13860-13865
[9]   Reduced switching in SCID B cells is associated with altered somatic mutation of recombined S regions [J].
Cook, AJL ;
Oganesian, L ;
Harumal, P ;
Basten, A ;
Brink, R ;
Jolly, CJ .
JOURNAL OF IMMUNOLOGY, 2003, 171 (12) :6556-6564
[10]   RNA:DNA complex formation upon transcription of immunoglobulin switch regions: Implications for the mechanism and regulation of class switch recombination [J].
Daniels, GA ;
Lieber, MR .
NUCLEIC ACIDS RESEARCH, 1995, 23 (24) :5006-5011