Functional microarray analysis of mammary organogenesis reveals a developmental role in adaptive thermogenesis

被引:104
作者
Master, SR
Hartman, JL
D'Cruz, CM
Moody, SE
Keiper, EA
Ha, SI
Cox, JD
Belka, GK
Chodosh, LA
机构
[1] Univ Penn, Sch Med, Dept Canc Biol, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Med, Dept Cell & Dev Biol, Philadelphia, PA 19104 USA
[3] Univ Penn, Sch Med, Dept Med, Philadelphia, PA 19104 USA
[4] Univ Penn, Sch Med, Div Endocrinol Diabet & Metab, Philadelphia, PA 19104 USA
[5] Univ Penn, Sch Med, Abramson Family Canc Res Inst, Philadelphia, PA 19104 USA
关键词
D O I
10.1210/me.16.6.1185
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The use of DNA microarrays to study vertebrate organogenesis presents unique analytical challenges compared with expression profiling of homogeneous cell populations. We have used a general approach that permits the automated, unbiased identification of biologically relevant patterns of gene expression to study murine mammary gland development. Our studies confirm the utility of this approach by demonstrating the ready identification of cellular processes and pathways of known functional importance in mammary development. Additionally, this approach permitted the identification of genetic pathways with unpredicted patterns of developmental regulation, including those involved in angiogenesis, extracellular matrix synthesis, and the beta-oxidation of fatty acids. Surprisingly, our findings demonstrate that the coordinate regulation of genes involved in the beta-oxidation of fatty acids reflects the presence of an abundant, yet previously unrecognized stromal compartment within the mammary gland that is composed of brown adipose tissue. Our data demonstrate that the amount of brown adipose tissue present in the mammary gland is developmentally regulated; that PPARalpha, Ucp1, and genes involved in fatty acid oxidation are spatially and temporally coregulated during development; that the mammary gland plays a functional role in adaptive thermogenesis; and that the transcriptional control of this adaptive response to cold is itself developmentally regulated.
引用
收藏
页码:1185 / 1203
页数:19
相关论文
共 66 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor α (PPARα) [J].
Aoyama, T ;
Peters, JM ;
Iritani, N ;
Nakajima, T ;
Furihata, K ;
Hashimoto, T ;
Gonzalez, FJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (10) :5678-5684
[4]   Adrenergic activation of vascular endothelial growth factor mRNA expression in rat brown adipose tissue: implication in cold-induced angiogenesis [J].
Asano, A ;
Morimatsu, M ;
Nikami, H ;
Yoshida, T ;
Saito, M .
BIOCHEMICAL JOURNAL, 1997, 328 :179-183
[5]  
Atkinson BL, 1997, J CELL BIOCHEM, V65, P325, DOI 10.1002/(SICI)1097-4644(19970601)65:3<325::AID-JCB3>3.3.CO
[6]  
2-G
[7]   The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999 [J].
Bairoch, A ;
Apweiler, R .
NUCLEIC ACIDS RESEARCH, 1999, 27 (01) :49-54
[8]  
BANISACCHI T, 1987, ACTA ANAT, V129, P1, DOI 10.1159/000146368
[9]   EXPRESSION OF FATTY ACID-BINDING PROTEINS IN THE DEVELOPING MOUSE MAMMARY-GLAND [J].
BANSAL, MP ;
MEDINA, D .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1993, 191 (01) :61-69
[10]   Peroxisome proliferator-activated receptor α activates transcription of the brown fat uncoupling protein-1 gene -: A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell [J].
Barberá, MJ ;
Schlüter, A ;
Pedraza, N ;
Iglesias, P ;
Villarroya, F ;
Giralt, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (02) :1486-1493