A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants

被引:277
作者
DebRoy, S
Thilmony, R
Kwack, YB
Nomura, K
He, SY [1 ]
机构
[1] Michigan State Univ, Cell & Mol Biol Program, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Energy Plant Res Lab, E Lansing, MI 48824 USA
关键词
D O I
10.1073/pnas.0401601101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Salicylic acid (SA)-mediated host immunity plays a central role in combating microbial pathogens in plants. Inactivation of SA-mediated immunity, therefore, would be a critical step in the evolution of a successful plant pathogen. It is known that mutations in conserved effector loci (CEL) in the plant pathogens Pseudomonas syringae (the ACEL mutation), Erwinia amylovora (the dspA/E mutation), and Pantoea stewartii subsp. stewartii (the wtsE mutation) exert particularly strong negative effects on bacterial virulence in their host plants by unknown mechanisms. We found that the loss of virulence in DeltaCEL and dspA/E mutants was linked to their inability to suppress cell wall-based defenses and to cause normal disease necrosis in Arabidopsis and apple host plants. The DeltaCEL mutant activated SA-dependent callose deposition in wild-type Arabidopsis but failed to elicit high levels of callose-associated defense in Arabidopsis plants blocked in SA accumulation or synthesis. This mutant also multiplied more aggressively in SA-deficient plants than in wild-type plants. The hopPtoM and avrE genes in the CEL of P. syringae were found to encode suppressors of this SA-dependent basal defense. The widespread conservation of the HopPtoM and AvrE families of effectors in various bacteria suggests that suppression of SA-dependent basal immunity and promotion of host cell death are important virulence strategies for bacterial infection of plants.
引用
收藏
页码:9927 / 9932
页数:6
相关论文
共 44 条
[1]   Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death [J].
Abramovitch, RB ;
Kim, YJ ;
Chen, SR ;
Dickman, MB ;
Martin, GB .
EMBO JOURNAL, 2003, 22 (01) :60-69
[2]   Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana [J].
Adam, L ;
Somerville, SC .
PLANT JOURNAL, 1996, 9 (03) :341-356
[3]   The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants [J].
Alfano, JR ;
Charkowski, AO ;
Deng, WL ;
Badel, JL ;
Petnicki-Ocwieja, T ;
van Dijk, K ;
Collmer, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (09) :4856-4861
[4]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[5]   MAP kinase signalling cascade in Arabidopsis innate immunity [J].
Asai, T ;
Tena, G ;
Plotnikova, J ;
Willmann, MR ;
Chiu, WL ;
Gomez-Gomez, L ;
Boller, T ;
Ausubel, FM ;
Sheen, J .
NATURE, 2002, 415 (6875) :977-983
[6]   Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 [J].
Axtell, MJ ;
Staskawicz, BJ .
CELL, 2003, 112 (03) :369-377
[7]   Pseudomonas syringae pv. tomato DC3000 HopPtoM (CEL ORF3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp type III secretion system in a chaperone-dependent manner [J].
Badel, JL ;
Nomura, K ;
Bandyopadhyay, S ;
Shimizu, R ;
Collmer, A ;
He, SY .
MOLECULAR MICROBIOLOGY, 2003, 49 (05) :1239-1251
[8]   A gene in the Pseudomonas syringae pv. tomato Hrp pathogenicity island conserved effector locus, hopPtoA1, contributes to efficient formation of bacterial colonies in planta and is duplicated elsewhere in the genome [J].
Badel, JL ;
Charkowski, AO ;
Deng, WL ;
Collmer, A .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2002, 15 (10) :1014-1024
[9]   Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato [J].
Bogdanove, AJ ;
Kim, JF ;
Wei, ZM ;
Kolchinsky, P ;
Charkowski, AO ;
Conlin, AK ;
Collmer, A ;
Beer, SV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (03) :1325-1330
[10]   A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defence response to infection [J].
Bretz, JR ;
Mock, NM ;
Charity, JC ;
Zeyad, S ;
Baker, CJ ;
Hutcheson, SW .
MOLECULAR MICROBIOLOGY, 2003, 49 (02) :389-400