A method for the simulation of two-phase flows without interface reconstruction

被引:21
作者
Benkenida, A [1 ]
Magnaudet, J [1 ]
机构
[1] UPS, INPT, UMR CNRS 5502, Inst Mecan Fluides Toulouse, F-31400 Toulouse, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE | 2000年 / 328卷 / 01期
关键词
two-phase flow; Navier-Stokes equations; numerical simulation; Taylor bubble;
D O I
10.1016/S1287-4620(00)88412-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop a technique for computing incompressible two-phase flows on a fixed grid without using any interface reconstruction procedure. We discuss the grounds, the motivations and the advantages of such an approach and we present several tests of validation, especially concerning the constitutive law for the viscosity. We finally show that the method is able to reproduce the essential features of the pow induced by the rise of a Taylor bubble in a vertical tube. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:25 / 32
页数:8
相关论文
共 15 条
[1]  
Benkenida A., 1999, THESIS
[2]   FLUX-CORRECTED TRANSPORT .1. SHASTA, A FLUID TRANSPORT ALGORITHM THAT WORKS [J].
BORIS, JP ;
BOOK, DL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1973, 11 (01) :38-69
[3]   A CONTINUUM METHOD FOR MODELING SURFACE-TENSION [J].
BRACKBILL, JU ;
KOTHE, DB ;
ZEMACH, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 100 (02) :335-354
[4]   Large-eddy simulation of high-Schmidt number mass transfer in a turbulent channel flow [J].
Calmet, I ;
Magnaudet, J .
PHYSICS OF FLUIDS, 1997, 9 (02) :438-455
[5]   Temporal evolution of periodic disturbances in two-layer Couette flow [J].
Coward, AV ;
Renardy, YY ;
Renardy, M ;
Richards, JR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 132 (02) :346-361
[6]   THE MOVEMENT OF SINGLE LARGE BUBBLES IN CLOSED VERTICAL TUBES [J].
GOLDSMITH, HL ;
MASON, SG .
JOURNAL OF FLUID MECHANICS, 1962, 14 (01) :42-58
[7]   NUMERICAL CALCULATION OF TIME-DEPENDENT VISCOUS INCOMPRESSIBLE FLOW OF FLUID WITH FREE SURFACE [J].
HARLOW, FH ;
WELCH, JE .
PHYSICS OF FLUIDS, 1965, 8 (12) :2182-&
[8]   VOLUME OF FLUID (VOF) METHOD FOR THE DYNAMICS OF FREE BOUNDARIES [J].
HIRT, CW ;
NICHOLS, BD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 39 (01) :201-225
[9]   MODELING MERGING AND FRAGMENTATION IN MULTIPHASE FLOWS WITH SURFER [J].
LAFAURIE, B ;
NARDONE, C ;
SCARDOVELLI, R ;
ZALESKI, S ;
ZANETTI, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 113 (01) :134-147
[10]  
MAGNAUDET J, UNPUB J COMP PHYS