Truncation of Arabidopsis thaliana and Selaginella lepidophylla trehalose-6-phosphate synthase unlocks high catalytic activity and supports high trehalose levels on expression in yeast

被引:68
作者
Van Dijck, P
Mascorro-Gallardo, JO
De Bus, M
Royackers, K
Iturriaga, G
Thevelein, JM
机构
[1] Katholieke Univ Leuven, Lab Mol Cell Biol, B-3001 Heverlee, Belgium
[2] VIB, B-3001 Heverlee, Belgium
[3] Univ Nacl Autonoma Mexico, Dept Biol Mol Plantas, Inst Biotechnol, Cuernavaca 62210, Morelos, Mexico
关键词
glycolysis; Saccharomyces cerevisiae; sugar influx;
D O I
10.1042/BJ20020517
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plants, such as Arabidopsis thaliana and Selaginella lepidophylla, contain genes homologous with the trehalose-6-phosphate synthase (TPS) genes of bacteria and fungi. Most plants do not accumulate trehalose with the desert resurrection plant S. lepidophylla, being a notable exception. Overexpression of the plant genes in a Saccharomyces cerevisiae tps1Delta mutant results in very low TPS-catalytic activity and trehalose accumulation. We show that truncation of the plant-specific N-terminal extension in the A. thaliana AtTPS1 and S. lepidophylla SlTPS1 homologues results in 10 40-fold higher TPS activity and 20 40-fold higher trehalose accumulation on expression in yeast. These results show that the plant TPS enzymes possess a high-potential catalytic activity. The growth defect of the tps1Delta strain on glucose was restored, however, the proper homoeostasis of glycolytic flux was not restored, indicating that the plant enzymes were unable to substitute for the yeast enzyme in the regulation of hexokinase activity. Further analysis of the N-terminus led to the identification of two conserved residues, which after mutagenesis result in strongly enhanced trehalose accumulation upon expression in yeast. The plant-specific N-terminal region may act as an inhibitory domain allowing modulation of TPS activity.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 46 条
[1]   COMPARISON OF FREE SUGARS IN GROWING DESICCATED PLANTS OF SELAGINELLA-LEPIDOPHYLLA [J].
ADAMS, RP ;
KENDALL, E ;
KARTHA, KK .
BIOCHEMICAL SYSTEMATICS AND ECOLOGY, 1990, 18 (2-3) :107-110
[2]   Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex [J].
Bell, W ;
Sun, WN ;
Hohmann, S ;
Wera, S ;
Reinders, A ;
De Virgilio, C ;
Wiemken, A ;
Thevelein, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (50) :33311-33319
[3]   Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase [J].
Blázquez, MA ;
Santos, E ;
Flores, CL ;
Martínez-Zapater, JM ;
Salinas, J ;
Gancedo, C .
PLANT JOURNAL, 1998, 13 (05) :685-689
[4]   TREHALOSE-6-PHOSPHATE, A NEW REGULATOR OF YEAST GLYCOLYSIS THAT INHIBITS HEXOKINASES [J].
BLAZQUEZ, MA ;
LAGUNAS, R ;
GANCEDO, C ;
GANCEDO, JM .
FEBS LETTERS, 1993, 329 (1-2) :51-54
[5]   THE MAXIMAL NUMBER OF INDUCED R-PARTITE SUBGRAPHS [J].
BOLLOBAS, B ;
EGAWA, Y ;
HARRIS, A ;
JIN, GP .
GRAPHS AND COMBINATORICS, 1995, 11 (01) :1-19
[6]   Expression of Escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis [J].
Bonini, BM ;
van Vaeck, C ;
Larsson, C ;
Gustafsson, L ;
Ma, PS ;
Winderickx, J ;
van Dijck, P ;
Thevelein, JM .
BIOCHEMICAL JOURNAL, 2000, 350 :261-268
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]  
CABIB E, 1958, J BIOL CHEM, V231, P259
[9]   PRESERVATION OF MEMBRANES IN ANHYDROBIOTIC ORGANISMS - THE ROLE OF TREHALOSE [J].
CROWE, JH ;
CROWE, LM ;
CHAPMAN, D .
SCIENCE, 1984, 223 (4637) :701-703
[10]  
CROWE JH, 1992, ANNU REV PHYSIOL, V54, P579, DOI 10.1146/annurev.ph.54.030192.003051