Nonperturbative solution of the nonconfining Schwinger model with a generalized regularization

被引:11
作者
Rahaman, A [1 ]
机构
[1] Durgapur Govt Coll, Burdwan, W Bengal, India
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2004年 / 19卷 / 17-18期
关键词
nonconfining QED; kinetic energy-like regularization; quark-antiquark potential;
D O I
10.1142/S0217751X04019251
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The nonconfining Schwinger model(4) is studied with a one-parameter class of kinetic energy-like regularization. It may be thought of as a generalization over the regularization considered in Ref. 4. The phase space structure has been determined in this new situation. The mass of the gauge boson acquires a generalized expression with the bare coupling constant and the parameters involved in the regularization. The confinement and deconfinement scenario has been studied at the quark-antiquark potential level.
引用
收藏
页码:3013 / 3023
页数:11
相关论文
共 13 条
[1]  
ABDALLA E, 1991, 2 DIMENSIONAL QUANTU
[2]   GENERALIZED GAUGE-INVARIANT REGULARIZATION OF THE SCHWINGER MODEL [J].
BHATTACHARYA, G ;
GHOSH, A ;
MITRA, P .
PHYSICAL REVIEW D, 1994, 50 (06) :4183-4188
[3]   MORE ABOUT MASSIVE SCHWINGER MODEL [J].
COLEMAN, S .
ANNALS OF PHYSICS, 1976, 101 (01) :239-267
[4]   CANONICAL QUANTIZATION OF A TWO-DIMENSIONAL MODEL WITH ANOMALOUS BREAKING OF GAUGE-INVARIANCE [J].
GIROTTI, HO ;
ROTHE, HJ ;
ROTHE, KD .
PHYSICAL REVIEW D, 1986, 33 (02) :514-518
[5]   QUANTUM DYNAMICS OF CHIRAL FERMIONS IN A MODEL WITH ANOMALOUS BREAKING OF GAUGE-INVARIANCE [J].
GIROTTI, HO ;
ROTHE, HJ ;
ROTHE, KD .
PHYSICAL REVIEW D, 1986, 34 (02) :592-597
[6]   NEW SOLUTIONS OF THIRRING MODEL [J].
HAGEN, CR .
NUOVO CIMENTO B, 1967, 51 (01) :169-&
[7]   SOLUBLE MODEL OF A SINGLE COMPONENT FERMION INTERACTING WITH A VECTOR-MESON [J].
HAGEN, CR .
ANNALS OF PHYSICS, 1973, 81 (01) :67-79
[8]  
HARADA K, 1990, PHYS REV LETT, V64, P134
[9]   VECTOR-MESON MASS GENERATION BY CHIRAL ANOMALIES [J].
JACKIW, R ;
RAJARAMAN, R .
PHYSICAL REVIEW LETTERS, 1985, 54 (12) :1219-1221
[10]   QUANTUM ELECTRODYNAMICS IN 2 DIMENSIONS [J].
LOWENSTEIN, JH ;
SWIECA, JA .
ANNALS OF PHYSICS, 1971, 68 (01) :172-+