共 41 条
Leporipoxvirus Cu-Zn superoxide dismutase homologs inhibit cellular superoxide dismutase, but are not essential for virus replication or virulence
被引:30
作者:
Cao, JX
Teoh, MLT
Moon, M
McFadden, G
Evans, DH
[1
]
机构:
[1] Univ Guelph, Dept Mol Biol & Genet, Guelph, ON N1G 2W1, Canada
[2] Univ Western Ontario, Robarts Res Inst, London, ON N6G 2V4, Canada
[3] Univ Western Ontario, Dept Microbiol, London, ON N6G 2V4, Canada
来源:
基金:
加拿大健康研究院;
加拿大自然科学与工程研究理事会;
关键词:
Shope fibroma virus;
myxoma virus;
Cu-ZnSOD;
vaccinia virus;
A45R;
S131R;
M131R;
D O I:
10.1006/viro.2002.1383
中图分类号:
Q93 [微生物学];
学科分类号:
071005 ;
100705 ;
摘要:
Vertebrate poxviruses encode homologs of cellular cupro-zinc superoxide dismutases (Cu-Zn SOD). In this study we have examined the molecular genetic properties of two Cu-Zn SOD homologs encoded by the Shope fibroma virus (SFV) and myxoma virus. These Leporipoxvinus proteins should be catalytically inactive as judged by the point mutations which alter a key catalytic arginine and restructure the predicted Cu-binding domain. This prediction was confirmed using in situ gel assays and recombinant proteins produced both in bacteria and in mammalian cells. Western blot analysis showed that these proteins are produced in abundance late in infection and can, upon exposure to oxidizing conditions, form disulfide cross-linked dimers. They are also virion components and not essential for growth in culture or virulence. Leporipoxvirus Cu-Zn SOD homologs affected two phenotypes. First, deletion of the myxoma M131R gene caused the mutant virus to grow better (similar to10-fold) in culture than does the wild-type parent. Second, expression of either native or recombinant Leporipoxvirus proteins is accompanied by a decline in cellular Cu-Zn SOD activity. We concluded that these gene products can somehow modulate the activity of host Cu-Zn SODS, but what advantage is thus gained by the virus remains to be established. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:125 / 135
页数:11
相关论文