Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach

被引:45
作者
Yang, HJ
Wolff, E
Kim, M
Diep, A
Miller, JH
机构
[1] Univ Calif Los Angeles, Dept Microbiol Mol Genet & Immunol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA
关键词
D O I
10.1111/j.1365-2958.2004.04125.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We searched for genes that create mutator phenotypes when put on to a multicopy plasmid in Escherichia coli. In many cases, this will result in overexpression of the gene in question. We constructed a random shotgun library with E. coli genomic fragments between 3 and 5 kbp in length on a multicopy plasmid vector that was transformed into E. coli to screen for frameshift mutators. We identified a total of 115 independent genomic fragments that covered 17 regions on the E. coli chromosome. Further studies identified 12 genes not previously known as causing mutator phenotypes when overproduced. A striking finding is that overproduction of the multidrug resistance transcription regulator, EmrR, results in a large increase in frameshift and base substitution mutagenesis. This suggests a link between multidrug resistance and mutagenesis. Other identified genes include those encoding DNA helicases (UvrD, RecG, RecQ), truncated forms of the DNA mismatch repair protein (MutS) and a primosomal component (DnaT), a negative modulator of initiation of replication/GATC-binding protein (SeqA), a stationary phase regulator AppY, a transcriptional regulator PaaX and three putative open reading frames, ycgW, yfjY and yjiD, encoding hypothetical proteins. In addition, we found three genes encoding proteins that were previously known to cause mutator effects under overexpression conditions: error-prone polymerase IV (DinB), DNA methylase (Dam) and sigma S factor (RpoS). This genomic strategy offers an approach to identify novel mutator effects resulting from the multicopy cloning (MCC) of specific genes and therefore complementing the conventional gene inactivation approach to finding mutators.
引用
收藏
页码:283 / 295
页数:13
相关论文
共 51 条
[1]  
Ausubel F.M., 1994, CURRENT PROTOCOLS MO
[2]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[3]   Hypermutation in pathogenic bacteria: Frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype [J].
Bucci, C ;
Lavitola, A ;
Salvatore, P ;
Del Giudice, L ;
Massardo, DR ;
Bruni, CB ;
Alifano, P .
MOLECULAR CELL, 1999, 3 (04) :435-445
[4]   MUTM, A 2ND MUTATOR LOCUS IN ESCHERICHIA-COLI THAT GENERATES G.C-]T.A TRANSVERSIONS [J].
CABRERA, M ;
NGHIEM, Y ;
MILLER, JH .
JOURNAL OF BACTERIOLOGY, 1988, 170 (11) :5405-5407
[5]   Overexpression of DNA polymerase β in cell results in a mutator phenotype and a decreased sensitivity to anticancer drugs [J].
Canitrot, Y ;
Cazaux, C ;
Fréchet, M ;
Bouayadi, K ;
Lesca, C ;
Salles, B ;
Hoffmann, JS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (21) :12586-12590
[6]  
CUPPLES CG, 1990, GENETICS, V125, P275
[7]   MPRA, AN ESCHERICHIA-COLI GENE THAT REDUCES GROWTH-PHASE-DEPENDENT SYNTHESIS OF MICROCIN-B17 AND MICROCIN-C7 AND BLOCKS OSMOINDUCTION OF PROU WHEN CLONED ON A HIGH-COPY-NUMBER PLASMID [J].
DELCASTILLO, I ;
GOMEZ, JM ;
MORENO, F .
JOURNAL OF BACTERIOLOGY, 1990, 172 (01) :437-445
[8]   High frequency of mutator strains among human uropathogenic Escherichia coli isolates [J].
Denamur, E ;
Bonacorsi, S ;
Giraud, A ;
Duriez, P ;
Hilali, F ;
Amorin, C ;
Bingen, E ;
Andremont, A ;
Picard, B ;
Taddei, F ;
Matic, I .
JOURNAL OF BACTERIOLOGY, 2002, 184 (02) :605-609
[9]  
Dixon W.J., 1969, INTRO STAT ANAL
[10]   MUTATOR STRAINS OF ESCHERICHIA-COLI, MUTD AND DNAQ, WITH DEFECTIVE EXONUCLEOLYTIC EDITING BY DNA POLYMERASE-III HOLOENZYME [J].
ECHOLS, H ;
LU, C ;
BURGERS, PMJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (08) :2189-2192