Suramin-induced decrease in prostate-specific antigen expression with no effect on tumor growth in the LNCaP model of human prostate cancer

被引:92
作者
Thalmann, GN
Sikes, RA
Chang, SM
Johnston, DA
vonEschenbach, AC
Chung, LWK
机构
[1] UNIV TEXAS,MD ANDERSON CANC CTR,DEPT UROL,HOUSTON,TX 77030
[2] UNIV TEXAS,MD ANDERSON CANC CTR,DEPT BIOMATH,HOUSTON,TX 77030
关键词
D O I
10.1093/jnci/88.12.794
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Suramin, a polysulfonated naphthylurea and a recognized antitrypanosomal agent, has shown some promise in phase II clinical trials in the management of hormone-refractory human prostate cancer. Reduction of serum prostate-specific antigen (PSA) levels has been proposed as an end point for evaluating the antitumor efficacy of treatments for hormone-refractory prostate cancer. Purpose: We examined the antitumor effect of suramin in an in vivo mouse model of hormone-refractory human prostate cancer to determine whether a decrease in PSA levels reflects a reduction in tumor growth (volume). The tumors were induced in castrated, athymic nude mice by use of the androgen-independent, tumorigenic human prostate cancer cell line C4-2, which is a subline of the androgen-dependent, parental nontumorigenic cell line LNCaP. We also evaluated the effects of suramin in vitro on cell growth and the expression of PSA messenger RNA (mRNA) in both LNCaP and C4-2 cells. Methods: For the in vivo studies, 24 mice were given a subcutaneous injection of 5 x 10(6) C4-2 cells at each of four sites. Animals (n = 20) with tumor volumes greater than 1 mm(3) or less than 5 mm(3) were divided equally into two groups. Drug treatment was initiated in one group by administration of 1 mg suramin intraperitoneally, followed by 0.1 mg suramin at 10-day intervals to maintain constant serum levels. Tumor growth and PSA expression levels were monitored. For the in vitro studies, both LNCaP and C4-2 cells were exposed to 100-400 mu g/mL suramin, and cell growth was monitored by a quantitative crystal violet assay. PSA mRNA expression was assessed by northern blot analysis in cells treated with either 250 mu g/mL suramin, 400 ng/mL dihydrotestosterone (DHT) (positive control), or 0.5-75 mu g/mL hydrocortisone (to mimic the clinical use of hydrocortisone during suramin treatment to compensate for the loss of adrenocortical function). In some studies, the combined effect of DHT and suramin on PSA mRNA expression was also evaluated. A two-way analysis of variance was performed to evaluate the treatment differences, and P values were obtained from two-sided tests for statistical significance. Results: In vivo, suramin did not significantly affect the growth of androgen-independent C4-2 tumors (relative to the growth of tumors in 5% glucose-treated control animals; P = .76). However, suramin significantly decreased the ratio of PSA level to tumor volume (ng/mL PSA per mm(3) of tumor) (P<.001). Mice developed bone metastases in both treatment arms. Suramin affected the in vitro growth of LNCaP cells but not of C4-2 cells. Suramin diminished PSA mRNA expression in both LNCaP and C4-2 cells grown in vitro. Hydrocortisone had no effect on PSA mRNA levels. Conclusions: Although suramin inhibited the growth of androgen-dependent LNCaP cells, it did not inhibit the growth of androgen-independent C4-2 cells either in vitro or in vivo. Suramin significantly decreased PSA mRNA expression in both cell lines in vitro and depressed serum PSA levels in mice bearing androgen-independent C4-2 tumors. Implications: PSA level should be used with caution as an end point in clinical trials using suramin therapy for hormone-refractory prostate cancer.
引用
收藏
页码:794 / 801
页数:8
相关论文
共 44 条
[1]  
ANDREWS PE, 1992, CANCER RES, V52, P1525
[2]  
BABAIAN RJ, 1991, CANCER-AM CANCER SOC, V67, P2200, DOI 10.1002/1097-0142(19910415)67:8<2200::AID-CNCR2820670833>3.0.CO
[3]  
2-E
[4]   ANTIPROLIFERATIVE EFFECTS OF SURAMIN ON ANDROGEN RESPONSIVE TUMOR-CELLS [J].
BERNS, EMJJ ;
SCHUURMANS, ALG ;
BOLT, J ;
LAMB, DJ ;
FOEKENS, JA ;
MULDER, E .
EUROPEAN JOURNAL OF CANCER, 1990, 26 (04) :470-474
[5]   CANCER STATISTICS, 1994 [J].
BORING, CC ;
SQUIRES, TS ;
TONG, T ;
MONTGOMERY, S .
CA-A CANCER JOURNAL FOR CLINICIANS, 1994, 44 (01) :7-26
[6]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[7]   EXPERIMENTAL ANIMAL-MODEL FOR MUCOPOLYSACCHARIDOSIS - SURAMIN-INDUCED GLYCOSAMINOGLYCAN AND SPHINGOLIPID ACCUMULATION IN THE RAT [J].
CONSTANTOPOULOS, G ;
REES, S ;
CRAGG, BG ;
BARRANGER, JA ;
BRADY, RO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1980, 77 (06) :3700-3704
[8]   GROWTH, MORPHOLOGY, AND MORPHOMETRY OF HUMAN HYPERTROPHIC PROSTATE CELLS TREATED WITH SURAMIN IN-VITRO [J].
DEANGELI, S ;
FANDELLA, A ;
CONCONI, MT ;
ANSELMO, G ;
PARNIGOTTO, PP .
PROSTATE, 1994, 25 (03) :117-124
[9]   SURAMIN - POTENT INHIBITOR OF THE REVERSE-TRANSCRIPTASE OF RNA TUMOR-VIRUSES [J].
DECLERCQ, E .
CANCER LETTERS, 1979, 8 (01) :9-22
[10]   SPECIFIC-INHIBITION OF THE ACTIVITY OF THE UROKINASE RECEPTOR-MEDIATED CELL-SURFACE PLASMINOGEN ACTIVATION SYSTEM BY SURAMIN [J].
ELLIS, V ;
DANO, K .
BIOCHEMICAL JOURNAL, 1993, 296 :505-510