Energy-based fatigue life prediction of fiberglass/epoxy composites using modular neural networks

被引:26
作者
El Kadi, H [1 ]
Al-Assaf, Y [1 ]
机构
[1] Amer Univ Sharjah, Sch Engn, Sharjah, U Arab Emirates
关键词
D O I
10.1016/S0263-8223(02)00071-5
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The strain energy has Successfully been used in the past as a fatigue failure criterion for unidirectional fiber reinforced laminae. This approach has the ability to unify the macro- and microscopic behavior and can allow for extending the failure criterion to incorporate the multiaxial case. In this work. the strain energy will be used as an input to the artificial neural network (ANN) to predict fatigue failure, The results obtained will be compared to those obtained using the maximum applied stress, the fiber orientation angle and the stress ratio as inputs to the ANN. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:85 / 89
页数:5
相关论文
共 18 条
[1]   Fatigue life prediction of unidirectional glass fiber/epoxy composite laminae using neural networks [J].
Al-Assaf, Y ;
El Kadi, H .
COMPOSITE STRUCTURES, 2001, 53 (01) :65-71
[2]  
Al-Nashash H, 2001, MATER EVAL, V59, P1072
[3]  
ASM International, 1997, ASM HDB, V19
[4]   Prediction of fatigue strength of composite laminates by means of neural networks [J].
Aymerich, F ;
Serra, M .
EXPERIMENTAL TECHNIQUES AND DESIGN IN COMPOSITE MATERIALS 3, 1998, 144 :231-239
[5]   Prediction of the fatigue life of unidirectional glass fiber/epoxy composite laminae using different neural network paradigms [J].
El Kadi, H ;
Al-Assaf, Y .
COMPOSITE STRUCTURES, 2002, 55 (02) :239-246
[6]   EFFECT OF STRESS RATIO ON THE FATIGUE OF UNIDIRECTIONAL GLASS-FIBER EPOXY COMPOSITE LAMINAE [J].
ELKADI, H ;
ELLYIN, F .
COMPOSITES, 1994, 25 (10) :917-924
[7]  
ELKADI H, 1993, THESIS U ALBERTA EDM
[8]   A FATIGUE FAILURE CRITERION FOR FIBER REINFORCED COMPOSITE LAMINAE [J].
ELLYIN, F ;
ELKADI, H .
COMPOSITE STRUCTURES, 1990, 15 (01) :61-74
[9]  
Haykin S., 1994, NEURAL NETWORKS COMP
[10]  
HERZALLAH R, 2000, P 4 WORLD MULT SYST