Electromagnetic fields on fractals

被引:74
作者
Tarasov, Vasily E. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119992, Russia
关键词
classical fields; electrodynamics; fractals; fractional integrals;
D O I
10.1142/S0217732306020974
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Fractals are measurable metric sets with non-integer Hausdorff dimensions. If electric and magnetic fields are defined on fractal and do not exist outside of fractal in Euclidean space, then we can use the fractional generalization of the integral Maxwell equations. The fractional integrals axe considered as approximations of integrals on fractals. We prove that fractal can be described as a specific medium.
引用
收藏
页码:1587 / 1600
页数:14
相关论文
共 37 条
[1]  
[Anonymous], 1985, P 19 NORDIC C MATH
[2]  
COLLINS JC, 1984, RENOMRALIZATION
[3]  
Edgar G.A, 1990, Measure, Topology, and Fractal Geometry
[4]  
FALCONER KF, 1985, GEOMETRY FRACTA SETS
[5]  
Federer H., 2014, GEOMETRIC MEASURE TH
[6]  
Hilfer R., 2001, Applications of Fractional Calculus in Physics
[7]  
KORABEL N, 2006, COMMUN NONLIN SCI NU, P11
[8]   Nonlinear fractional dynamics on a lattice with long range interactions [J].
Laskin, N. ;
Zaslavsky, G. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 368 (01) :38-54
[9]  
Le Mehaute A., 1998, FLECHES TEMPS GEOMET
[10]   On Mittag-Leffler-type functions in fractional evolution processes [J].
Mainardi, F ;
Gorenflo, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :283-299