Social mimic optimization algorithm and engineering applications

被引:62
作者
Balochian, Saeed [1 ]
Baloochian, Hossein [2 ]
机构
[1] Islamic Azad Univ, Dept Elect Engn, Gonabad Brunch, Gonabad 9691664791, Khorasan E Raza, Iran
[2] Rd Maintenance & Transportat Org, Tehran, Iran
关键词
Meta-heuristic; Optimization; Swarm intelligence; Social mimic optimization; PARTICLE SWARM OPTIMIZATION; LEARNING-BASED OPTIMIZATION; EVOLUTION; INTEGER; SEARCH;
D O I
10.1016/j.eswa.2019.05.035
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Increase in complexity of real world problems has provided an area to explore efficient methods to solve computer science problems. Meta-heuristic methods based on evolutionary computations and swarm intelligence are instances of techniques inspired by nature. This paper presents a novel social mimic optimization (SMO) algorithm inspired by mimicking behavior to solve optimization problems. The proposed algorithm is evaluated using 23 test functions. Obtained results are compared with 14 known optimization algorithms including Whale optimization algorithm (WOA), Grasshopper optimization algorithm (GOA), Particle Swarm Optimization (PSO), Stochastic fractal search (SFS), Grey Wolf Optimizer (GWO), Optics Inspired Optimization (OIO), League Championship Algorithm (LCA), Wind Driven Optimization (WDO), Harmony search (HS), Firefly Algorithm (FA), Artificial Bee Colony (ABC), Biogeography Based Optimization (BBO), Bat Algorithm (BA), and Teaching Learning Based Optimization (TLBO). Obtained results indicate higher capability of the SMO algorithm in solving high-dimensional decision variables. Furthermore, SMO is used to solve two classic engineering design problems. Three important features of SMO are simple implementation, solving optimization problems with minimum population size and not requiring control parameters. Results of various evaluations show superiority of the proposed method in finding the optimal solution with minimum function evaluations. This superiority is achieved based on reducing number of initial population. The proposed method can be applied to applications like automatic evolution of robotics, automatic control of machines and innovation of machines in finding better solutions with less cost. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:178 / 191
页数:14
相关论文
共 68 条
[1]  
Adrian A., 2014, COMP STUDY GA PSO AC, V19
[2]  
Bayraktar Z., 2010, 2010 IEEE ANT PROP S
[3]   Implementation of different encoding types on structural optimization based on adaptive genetic algorithm [J].
Bekiroglu, Serkan ;
Dede, Tayfun ;
Ayvaz, Yusuf .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2009, 45 (11) :826-835
[4]   Quantum Inspired Algorithm for a VRP with Heterogeneous Fleet Mixed Backhauls and Time Windows [J].
Berghida, Meryem ;
Boukra, Abdelmadjid .
INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING, 2016, 7 (04) :18-38
[5]  
Bhambu P., 2018, MODIFIED GBEST ARTIF
[6]  
Chauhan G., 2017, KALPA PUBLICATIONS C, V1, P239
[7]   Symbiotic Organisms Search: A new metaheuristic optimization algorithm [J].
Cheng, Min-Yuan ;
Prayogo, Doddy .
COMPUTERS & STRUCTURES, 2014, 139 :98-112
[8]  
Chickermane H, 1996, INT J NUMER METH ENG, V39, P829, DOI 10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO
[9]  
2-U
[10]   Constraint-handling in genetic algorithms through the use of dominance-based tournament selection [J].
Coello, CAC ;
Montes, EM .
ADVANCED ENGINEERING INFORMATICS, 2002, 16 (03) :193-203