ddPCRclust: an R package and Shiny app for automated analysis of multiplexed ddPCR data

被引:13
作者
Brink, Benedikt G. [1 ,2 ,3 ]
Meskas, Justin [4 ]
Brinkman, Ryan R. [4 ,5 ]
机构
[1] Bielefeld Univ, Fac Technol, Int Res Training Grp Computat Methods Anal Divers, Bielefeld, Germany
[2] Bielefeld Univ, Fac Technol, Biodata Min Grp, Bielefeld, Germany
[3] Bielefeld Univ, Ctr Biotechnol, Bielefeld, Germany
[4] BC Canc Agcy, Terry Fox Lab, Vancouver, BC V5Z 1L3, Canada
[5] Univ British Columbia, Dept Med Genet, Vancouver, BC V6H 3N1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
DROPLET DIGITAL PCR; FLOW-CYTOMETRY DATA;
D O I
10.1093/bioinformatics/bty136
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Droplet digital PCR (ddPCR) is an emerging technology for quantifying DNA. By partitioning the target DNA into similar to 20 000 droplets, each serving as its own PCR reaction compartment, a very high sensitivity of DNA quantification can be achieved. However, manual analysis of the data is time consuming and algorithms for automated analysis of non-orthogonal, multiplexed ddPCR data are unavailable, presenting a major bottleneck for the advancement of ddPCR transitioning from low-throughput to high-throughput. Results: ddPCRclust is an R package for automated analysis of data from Bio-Rad's droplet digital PCR systems (QX100 and QX200). It can automatically analyze and visualize multiplexed ddPCR experiments with up to four targets per reaction. Results are on par with manual analysis, but only take minutes to compute instead of hours. The accompanying Shiny app ddPCRvis provides easy access to the functionalities of ddPCRclust through a web-browser based GUI. Availability and implementation: R package: https://github. com/bgbrink/ddPCRclust; Interface: https://github. com/bgbrink/ddPCRvis/; Web: https://bibiserv.cebitec.uni-bielefeld.de/ddPCRvis/. Contact: bbrink@cebitec.uni-bielefeld.de Supplementary information: Supplementary data are available at Bioinformatics online.
引用
收藏
页码:2687 / 2689
页数:3
相关论文
共 16 条
[1]  
[Anonymous], 2017, R LANG ENV STAT COMP
[2]  
Attali Dean, 2016, F1000Res, V5, P1411
[3]  
Chang W., 2022, Shiny: Web Application Framework for R
[4]   twoddpcr: an R/Bioconductor package and Shiny app for Droplet Digital PCR analysis [J].
Chiu, Anthony ;
Ayub, Mahmood ;
Dive, Caroline ;
Brady, Ged ;
Miller, Crispin J. .
BIOINFORMATICS, 2017, 33 (17) :2743-2745
[5]   Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection [J].
Dobnik, David ;
Stebih, Dejan ;
Blejec, Andrej ;
Morisset, Dany ;
Zel, Jana .
SCIENTIFIC REPORTS, 2016, 6
[6]   flowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding [J].
Ge, Yongchao ;
Sealfon, Stuart C. .
BIOINFORMATICS, 2012, 28 (15) :2052-2058
[7]  
Hornik K., 2005, J STAT SOFTW, V14, P25
[8]   COMPARING PARTITIONS [J].
HUBERT, L ;
ARABIE, P .
JOURNAL OF CLASSIFICATION, 1985, 2 (2-3) :193-218
[9]   A Robust Protocol for Using Multiplexed Droplet Digital PCR to Quantify Somatic Copy Number Alterations in Clinical Tissue Specimens [J].
Hughesman, Curtis B. ;
Lu, X. J. David ;
Liu, Kelly Y. P. ;
Zhu, Yuqi ;
Poh, Catherine F. ;
Haynes, Charles .
PLOS ONE, 2016, 11 (08)
[10]   Model-Based Classification for Digital PCR: Your Umbrella for Rain [J].
Jacobs, Bart K. M. ;
Goetghebeur, Els ;
Vandesompele, Jo ;
De Ganck, Ariane ;
Nijs, Nele ;
Beckers, Anneleen ;
Papazova, Nina ;
Roosens, Nancy H. ;
Clement, Lieven .
ANALYTICAL CHEMISTRY, 2017, 89 (08) :4461-4467