Centennial-scale changes in the global carbon cycle during the last deglaciation

被引:382
作者
Marcott, Shaun A. [1 ,2 ]
Bauska, Thomas K. [1 ]
Buizert, Christo [1 ]
Steig, Eric J. [3 ]
Rosen, Julia L. [1 ]
Cuffey, Kurt M. [4 ]
Fudge, T. J. [3 ]
Severinghaus, Jeffery P. [5 ]
Ahn, Jinho [6 ]
Kalk, Michael L. [1 ]
McConnell, Joseph R. [7 ]
Sowers, Todd [8 ]
Taylor, Kendrick C. [7 ]
White, James W. C. [9 ]
Brook, Edward J. [1 ]
机构
[1] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA
[2] Univ Wisconsin Madison, Dept Geosci, Madison, WI 53706 USA
[3] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA
[4] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA
[5] Univ Calif San Diego, Scripps Inst Oceanog, San Diego, CA 92037 USA
[6] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea
[7] Nevada Syst Higher Educ, Desert Res Inst, Reno, NV 89512 USA
[8] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA
[9] Univ Colorado, INSTAAR, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
VOSTOK ICE CORE; ATMOSPHERIC CO2; ANTARCTIC ICE; POLAR ICE; CHRONOLOGY AICC2012; GREENLAND; CLIMATE; AIR; OCEAN; AGE;
D O I
10.1038/nature13799
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Global climate and the concentration of atmospheric carbon dioxide (CO2) are correlated over recent glacial cycles(1,2). The combination of processes responsible for a rise in atmospheric CO2 at the last glacial termination(1,3) (23,000 to 9,000 years ago), however, remains uncertain(1-3). Establishing the timing and rate of CO2 changes in the past provides critical insight into the mechanisms that influence the carbon cycle and helps put present and future anthropogenic emissions in context. Here we present CO2 and methane (CH4) records of the last deglaciation from a new high-accumulation West Antarctic ice core with unprecedented temporal resolution and precise chronology. We show that although low-frequency CO2 variations parallel changes in Antarctic temperature, abrupt CO2 changes occur that have a clear relationship with abrupt climate changes in the Northern Hemisphere. A significant proportion of the direct radiative forcing associated with the rise in atmospheric CO2 occurred in three sudden steps, each of 10 to 15 parts per million. Every step took place in less than two centuries and was followed by no notable change in atmospheric CO2 for about 1,000 to 1,500 years. Slow, millennial-scale ventilation of Southern Ocean CO2-rich, deep-ocean water masses is thought to have been fundamental to the rise in atmospheric CO2 associated with the glacial termination(4), given the strong covariance of CO2 levels and Antarctic temperatures(5). Our data establish a contribution from an abrupt, centennial-scale mode of CO2 variability that is not directly related to Antarctic temperature. We suggest that processes operating on centennial timescales, probably involving the Atlantic meridional overturning circulation, seem to be influencing global carbon-cycle dynamics and are at present not widely considered in Earth system models.
引用
收藏
页码:616 / +
页数:14
相关论文
共 59 条
[1]   A record of atmospheric CO2 during the last 40,000 years from the Siple Dome, Antarctica ice core -: art. no. D13305 [J].
Ahn, J ;
Wahlen, M ;
Deck, BL ;
Brook, EJ ;
Mayewski, PA ;
Taylor, KC ;
White, JWC .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D13) :D133051-8
[2]   Atmospheric CO2 over the last 1000 years: A high-resolution record from the West Antarctic Ice Sheet (WAIS) Divide ice core [J].
Ahn, Jinho ;
Brook, Edward J. ;
Mitchell, Logan ;
Rosen, Julia ;
McConnell, Joseph R. ;
Taylor, Kendrick ;
Etheridge, David ;
Rubino, Mauro .
GLOBAL BIOGEOCHEMICAL CYCLES, 2012, 26
[3]   A high-precision method for measurement of paleoatmospheric CO2 in small polar ice samples [J].
Ahn, Jinho ;
Brook, Edward J. ;
Howell, Kate .
JOURNAL OF GLACIOLOGY, 2009, 55 (191) :499-506
[4]   High-resolution record of Northern Hemisphere climate extending into the last interglacial period [J].
Andersen, KK ;
Azuma, N ;
Barnola, JM ;
Bigler, M ;
Biscaye, P ;
Caillon, N ;
Chappellaz, J ;
Clausen, HB ;
DahlJensen, D ;
Fischer, H ;
Flückiger, J ;
Fritzsche, D ;
Fujii, Y ;
Goto-Azuma, K ;
Gronvold, K ;
Gundestrup, NS ;
Hansson, M ;
Huber, C ;
Hvidberg, CS ;
Johnsen, SJ ;
Jonsell, U ;
Jouzel, J ;
Kipfstuhl, S ;
Landais, A ;
Leuenberger, M ;
Lorrain, R ;
Masson-Delmotte, V ;
Miller, H ;
Motoyama, H ;
Narita, H ;
Popp, T ;
Rasmussen, SO ;
Raynaud, D ;
Rothlisberger, R ;
Ruth, U ;
Samyn, D ;
Schwander, J ;
Shoji, H ;
Siggard-Andersen, ML ;
Steffensen, JP ;
Stocker, T ;
Sveinbjörnsdóttir, AE ;
Svensson, A ;
Takata, M ;
Tison, JL ;
Thorsteinsson, T ;
Watanabe, O ;
Wilhelms, F ;
White, JWC .
NATURE, 2004, 431 (7005) :147-151
[5]   Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2 [J].
Anderson, R. F. ;
Ali, S. ;
Bradtmiller, L. I. ;
Nielsen, S. H. H. ;
Fleisher, M. Q. ;
Anderson, B. E. ;
Burckle, L. H. .
SCIENCE, 2009, 323 (5920) :1443-1448
[6]  
[Anonymous], ATMOS CHEM PHYS DISC, DOI DOI 10.5194/ACPD-13-23089-2013
[7]   CO2-CLIMATE RELATIONSHIP AS DEDUCED FROM THE VOSTOK ICE CORE - A REEXAMINATION BASED ON NEW MEASUREMENTS AND ON A REEVALUATION OF THE AIR DATING [J].
BARNOLA, JM ;
PIMIENTA, P ;
RAYNAUD, D ;
KOROTKEVICH, YS .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1991, 43 (02) :83-90
[8]   Controls on the movement and composition of firn air at the West Antarctic Ice Sheet Divide [J].
Battle, M. O. ;
Severinghaus, J. P. ;
Sofen, E. D. ;
Plotkin, D. ;
Orsi, A. J. ;
Aydin, M. ;
Montzka, S. A. ;
Sowers, T. ;
Tans, P. P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (21) :11007-11021
[9]   An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120-800 ka [J].
Bazin, L. ;
Landais, A. ;
Lemieux-Dudon, B. ;
Kele, H. Toye Mahamadou ;
Veres, D. ;
Parrenin, F. ;
Martinerie, P. ;
Ritz, C. ;
Capron, E. ;
Lipenkov, V. ;
Loutre, M. -F. ;
Raynaud, D. ;
Vinther, B. ;
Svensson, A. ;
Rasmussen, S. O. ;
Severi, M. ;
Blunier, T. ;
Leuenberger, M. ;
Fischer, H. ;
Masson-Delmotte, V. ;
Chappellaz, J. ;
Wolff, E. .
CLIMATE OF THE PAST, 2013, 9 (04) :1715-1731
[10]   GLACIAL TO INTERGLACIAL CHANGES IN OCEAN CHEMISTRY [J].
BROECKER, WS .
PROGRESS IN OCEANOGRAPHY, 1982, 11 (02) :151-197