The role of clay network on macromolecular chain mobility and relaxation in isotactic polypropylene/organoclay nanocomposites

被引:172
作者
Wang, Ke
Liang, Si
Deng, Jinni
Yang, Hong
Zhang, Qin
Fu, Qiang [1 ]
Dong, Xia
Wang, Dujin
Han, Charles C.
机构
[1] Chinese Acad Sci, Key Lab Engn Plast, Joint Lab Polymer Sci & Mat, Inst Chem, Beijing 100080, Peoples R China
[2] Sichuan Univ, Dept Polymer Sci & Mat, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
iPP/organoclay nanocomposite; clay network; chain mobility;
D O I
10.1016/j.polymer.2006.07.067
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
It is well known that a so-called "three-dimensional filler network structure" will be constructed in the polymer/layered silicate nanocomposites when the content of layered clay reaches a threshold value, at which the silicate sheets are incapable of freely rotating, due to physical jamming and connecting of the nanodispersed layered silicate. In this article, the effect of such clay network on the mobility and relaxation of macromolecular chains in isotactic polypropylene(iPP)/organoclay nanocomposites was investigated in detail with a combination of DMTA, DSC, TGA, TEM, rheometry and melt flow index measurements. The main aim is to establish a relationship between the mesoscopic filler network structure and the macroscopic properties of the polymer nanocomposites, particularly to explore the role of the clay network on the mobility and relaxation of macromolecular chains. It was found that the nanodispersed clay tactoids and layers play less important or dominant roles on the mobility of iPP chains depending on the formation of percolating filler network. The turning point of macroscopic properties appeared at 1 wt% organoclay content. Before this point, the effect of organoclay can be negligible, and the increase of chain mobility was ascribed to the decrease of molecular weight of polymer chains, as commonly occurs during dynamic melt processing; after this point, however, a reduced mobility of chains and a retarded chain relaxation were observed and attributed to the formation of a mesoscopic filler network. The essential features of such a mesoscopic organoclay network were estimated and discussed on the basis of stress relaxation and structural reversion measurements. A schematic model was proposed to describe the different relaxation and motion behaviors of macromolecular chains in the unfilled polymer and the filled hybrids with partial and percolated organoclay networks, respectively. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7131 / 7144
页数:14
相关论文
共 60 条
[1]   In-situ X-ray scattering studies of a unique toughening mechanism in surface-modified carbon nanofiber/UHMWPE nanocomposite films [J].
Chen, XM ;
Yoon, KW ;
Burger, C ;
Sics, I ;
Fang, DF ;
Hsiao, BS ;
Chu, B .
MACROMOLECULES, 2005, 38 (09) :3883-3893
[2]   On exfoliation of montmorillonite in epoxy [J].
Chin, IJ ;
Thurn-Albrecht, T ;
Kim, HC ;
Russell, TP ;
Wang, J .
POLYMER, 2001, 42 (13) :5947-5952
[3]  
Choi HJ, 2001, MACROMOL RAPID COMM, V22, P320, DOI 10.1002/1521-3927(20010301)22:5<320::AID-MARC320>3.0.CO
[4]  
2-3
[5]   Chemorheology and properties of epoxy/layered silicate nanocomposites [J].
Dean, D ;
Walker, R ;
Theodore, M ;
Hampton, E ;
Nyairo, E .
POLYMER, 2005, 46 (09) :3014-3021
[6]   Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity [J].
Du, FM ;
Scogna, RC ;
Zhou, W ;
Brand, S ;
Fischer, JE ;
Winey, KI .
MACROMOLECULES, 2004, 37 (24) :9048-9055
[7]   Effect of organoclay structure on nylon 6 nanocomposite morphology and properties [J].
Fornes, TD ;
Yoon, PJ ;
Hunter, DL ;
Keskkula, H ;
Paul, DR .
POLYMER, 2002, 43 (22) :5915-5933
[8]   Nylon 6 nanocomposites: the effect of matrix molecular weight [J].
Fornes, TD ;
Yoon, PJ ;
Keskkula, H ;
Paul, DR .
POLYMER, 2001, 42 (25) :9929-9940
[9]   A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites [J].
Galgali, G ;
Ramesh, C ;
Lele, A .
MACROMOLECULES, 2001, 34 (04) :852-858
[10]   Relationships between structure and rheology in model nanocomposites of ethylene-vinyl-based copolymers and organoclays [J].
Gelfer, MY ;
Burger, C ;
Chu, B ;
Hsiao, BS ;
Drozdov, AD ;
Si, M ;
Rafailovich, M ;
Sauer, BB ;
Gilman, JRW .
MACROMOLECULES, 2005, 38 (09) :3765-3775