The Input-Output Transformation of the Hippocampal Granule Cells: From Grid Cells to Place Fields

被引:117
作者
de Almeida, Licurgo [3 ]
Idiart, Marco [3 ,4 ]
Lisman, John E. [1 ,2 ]
机构
[1] Brandeis Univ, Dept Biol, Waltham, MA 02454 USA
[2] Brandeis Univ, Volen Ctr Complex Syst, Waltham, MA 02454 USA
[3] Univ Fed Rio Grande do Sul, Neurosci Program, BR-91501970 Porto Alegre, RS, Brazil
[4] Univ Fed Rio Grande do Sul, Inst Phys, BR-91501970 Porto Alegre, RS, Brazil
关键词
LONG-TERM POTENTIATION; GAMMA-FREQUENCY OSCILLATIONS; DENTATE GYRUS; ENTORHINAL CORTEX; DENDRITIC SPINES; SPATIAL REPRESENTATION; QUANTAL TRANSMISSION; PATTERN SEPARATION; PERFORANT PATHS; PYRAMIDAL CELLS;
D O I
10.1523/JNEUROSCI.6048-08.2009
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Grid cells in the rat medial entorhinal cortex fire (periodically) over the entire environment. These cells provide input to hippocampal granule cells whose output is characterized by one or more small place fields. We sought to understand how this input-output transformation occurs. Available information allows simulation of this process with no freely adjustable parameters. We first examined the spatial distribution of excitation in granule cells produced by the convergence of excitatory inputs from randomly chosen grid cells. Because the resulting summation depends on the number of inputs, it is necessary to use a realistic number (similar to 1200) and to take into consideration their 20-fold variation in strength. The resulting excitation maps have only modest peaks and valleys. To analyze how this excitation interacts with inhibition, we used an E%-max (percentage of maximal suprathreshold excitation) winner-take-all rule that describes how gamma-frequency inhibition affects firing. We found that simulated granule cells have firing maps that have one or more place fields whose size and number approximates those observed experimentally. A substantial fraction of granule cells have no place fields, as observed experimentally. Because the input firing rates and synaptic properties are known, the excitatory charge into granule cells could be calculated (2-3 pC) and was found to be only somewhat larger than required to fire granule cells (1 pC). We conclude that the input-output transformation of dentate granule does not depend strongly on synaptic modification; place field formation can be understood in terms of simple summation of randomly chosen excitatory inputs, in conjunction with a winner-take-all network mechanism.
引用
收藏
页码:7504 / 7512
页数:9
相关论文
共 65 条
[1]   PTP and LTP at a hippocampal mossy fiber-interneuron synapse [J].
Alle, H ;
Jonas, P ;
Geiger, JRP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14708-14713
[2]   Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks [J].
Bartos, M ;
Vida, I ;
Frotscher, M ;
Meyer, A ;
Monyer, H ;
Geiger, JRP ;
Jonas, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :13222-13227
[3]   Quantal amplitude and quantal variance of strontium-induced asynchronous EPSCs in rat dentate granule neurons [J].
Bekkers, JM ;
Clements, JD .
JOURNAL OF PHYSIOLOGY-LONDON, 1999, 516 (01) :227-248
[4]   Scale-invariant memory representations emerge from moire interference between grid fields that produce theta oscillations: A computational model [J].
Blair, Hugh T. ;
Welday, Adam C. ;
Zhang, Kechen .
JOURNAL OF NEUROSCIENCE, 2007, 27 (12) :3211-3229
[5]  
BRAGIN A, 1995, J NEUROSCI, V15, P47
[6]   The effects on place cells of local scopolamine dialysis are mimicked by a mixture of two specific muscarinic antagonists [J].
Brazhnik, E ;
Borgnis, R ;
Muller, RU ;
Fox, SE .
JOURNAL OF NEUROSCIENCE, 2004, 24 (42) :9313-9323
[7]   Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex [J].
Brun, Vegard Heimly ;
Leutgeb, Stefan ;
Wu, Hui-Qiu ;
Schwarcz, Robert ;
Witter, Menno P. ;
Moser, Edvard I. ;
Moser, May-Britt .
NEURON, 2008, 57 (02) :290-302
[8]   Sparse, environmentally selective expression of arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience [J].
Chawla, MK ;
Guzowski, JF ;
Ramirez-Amaya, V ;
Lipa, P ;
Hoffman, KL ;
Marriott, LK ;
Worley, PF ;
McNaughton, BL ;
Barnes, CA .
HIPPOCAMPUS, 2005, 15 (05) :579-586
[9]   Abnormal hippocampal spatial representations in αCaMKIIT286A and CREBαΔ- mice [J].
Cho, YH ;
Giese, KP ;
Tanila, H ;
Silva, AJ ;
Eichenbaum, H .
SCIENCE, 1998, 279 (5352) :867-869
[10]   MECHANISMS UNDERLYING INDUCTION OF LONG-TERM POTENTIATION IN RAT MEDIAL AND LATERAL PERFORANT PATHS INVITRO [J].
COLINO, A ;
MALENKA, RC .
JOURNAL OF NEUROPHYSIOLOGY, 1993, 69 (04) :1150-1159