Quantitative analysis of liver protein expression during hibernation in the golden-mantled ground squirrel

被引:68
作者
Epperson, LE [1 ]
Dahl, TA [1 ]
Martin, SL [1 ]
机构
[1] Univ Colorado, Sch Med, Dept Cell & Dev Biol, Program Mol Biol, Denver, CO 80262 USA
关键词
D O I
10.1074/mcp.M400042-MCP200
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Mammals that enter deep hibernation experience extreme reductions in body temperature and in metabolic, respiratory, and heart rates for several weeks at a time. Survival of these extremes likely entails a highly regulated network of tissue- and time-specific gene expression patterns that remain largely unknown. To date, studies to identify differentially-expressed genes have employed a candidate gene approach or in a few cases broader unbiased screens at the RNA level. Here we use a proteomic approach to compare and identify differentially expressed liver proteins from two seasonal stages in the golden-mantled ground squirrel ( summer and entrance into torpor) using two-dimensional gels followed by MS/MS. Eighty-four two-dimensional gel spots were found that quantitatively alter with the hibernation season, 68 of which gave unambiguous identifications based on similarity to sequences in the available mammalian database. Based on what is known of these proteins from prior research, they are involved in a variety of cellular processes including protein turnover, detoxification, purine biosynthesis, gluconeogenesis, lipid metabolism and mobility, ketone body formation, cell structure, and redox balance. A number of the enzymes found to change seasonally are known to be either rate-limiting or first enzymes in a metabolic pathway, indicating key roles in metabolic control. Functional roles are proposed to explain the changes seen in protein levels and their potential influence on the phenotype of hibernation.
引用
收藏
页码:920 / 933
页数:14
相关论文
共 52 条
[1]   Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes [J].
Adkins, RM ;
Walton, AH ;
Honeycutt, RL .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2003, 26 (03) :409-420
[2]   Low-temperature carbon utilization is regulated by novel gene activity in the heart of a hibernating mammal [J].
Andrews, MT ;
Squire, TL ;
Bowen, CM ;
Rollins, MB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (14) :8392-8397
[3]   Negative regulation of epidermal growth factor signaling by selective proteolytic mechanisms in the endosome mediated by cathepsin B [J].
Authier, F ;
Métioui, M ;
Bell, AW ;
Mort, JS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (47) :33723-33731
[4]   FREEZE AVOIDANCE IN A MAMMAL - BODY TEMPERATURES BELOW 0-DEGREES-C IN AN ARCTIC HIBERNATOR [J].
BARNES, BM .
SCIENCE, 1989, 244 (4912) :1593-1595
[5]  
Bernard Karine R, 2004, Methods Mol Biol, V250, P263
[6]   Molecular and metabolic aspects of mammalian hibernation - Expression of the hibernation phenotype results from the coordinated regulation of multiple physiological and molecular events during preparation for and entry into torpor [J].
Boyer, BB ;
Barnes, BM .
BIOSCIENCE, 1999, 49 (09) :713-724
[7]   Differential regulation of uncoupling protein gene homologues in multiple tissues of hibernating ground squirrels [J].
Boyer, BB ;
Barnes, BM ;
Lowell, BB ;
Grujic, D .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 1998, 275 (04) :R1232-R1238
[8]   GLUCONEOGENESIS DURING HIBERNATION AND AROUSAL FROM HIBERNATION [J].
BURLINGTON, RF ;
KLAIN, GJ .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY, 1967, 22 (03) :701-+
[9]   Hibernation induces oxidative stress and activation of NF-κB in ground squirrel intestine [J].
Carey, HV ;
Frank, CL ;
Seifert, JP .
JOURNAL OF COMPARATIVE PHYSIOLOGY B-BIOCHEMICAL SYSTEMIC AND ENVIRONMENTAL PHYSIOLOGY, 2000, 170 (07) :551-559
[10]   Mammalian hibernation: Cellular and molecular responses to depressed metabolism and low temperature [J].
Carey, HV ;
Andrews, MT ;
Martin, SL .
PHYSIOLOGICAL REVIEWS, 2003, 83 (04) :1153-1181