Automated estimation of individual conifer tree height and crown diameter via two-dimensional spatial wavelet analysis of lidar data

被引:190
作者
Falkowski, Michael J. [1 ]
Smith, Alistair M. S.
Hudak, Andrew T.
Gessler, Paul E.
Vierling, Lee A.
Crookston, Nicholas L.
机构
[1] Univ Idaho, Dept Forest Resources, Moscow, ID 83844 USA
[2] USDA, Forest Serv, Rocky Mt Res Stn, Moscow, ID 83843 USA
[3] Univ Idaho, Dept Rangeland Ecol & Management, Moscow, ID 83844 USA
基金
美国国家航空航天局;
关键词
D O I
10.5589/m06-005
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
We describe and evaluate a new analysis technique, spatial wavelet analysis (SWA), to automatically estimate the location, height, and crown diameter of individual trees within mixed conifer open canopy stands from light detection and ranging (lidar) data. Two-dimensional Mexican hat wavelets, over a range of likely tree crown diameters, were convolved with lidar canopy height models. Identification of local maxima within the resultant wavelet transformation image then allowed determination of the location, height, and crown diameters of individual trees. In this analysis, which focused solely on individual trees within open canopy forests, 30 trees incorporating seven dominant North American tree species were assessed. Two-dimensional (2D) wavelet-derived estimates were well correlated with field measures of tree height (r = 0.97) and crown diameter (r = 0.86). The 2D wavelet-derived estimates compared favorably with estimates derived using an established method that uses variable window filters (VWF) to estimate the same variables but relies on a priori knowledge of the tree height - crown diameter relationship. The 2D spatial wavelet analysis presented herein could potentially allow automated, large-scale, remote estimation of timber board feet, foliar biomass, canopy volume, and aboveground carbon, although further research testing the limitations of the method in a variety of forest types with increasing canopy closures is warranted.
引用
收藏
页码:153 / 161
页数:9
相关论文
共 51 条
[1]  
Addison P.S., 2002, ILLUSTRATED WAVELET, V1st ed.
[2]   Estimating forest canopy fuel parameters using LIDAR data [J].
Andersen, HE ;
McGaughey, RJ ;
Reutebuch, SE .
REMOTE SENSING OF ENVIRONMENT, 2005, 94 (04) :441-449
[3]  
[Anonymous], 1995, Canadian Journal of Remote Sensing, DOI DOI 10.1080/07038992.1995.10874590
[4]   Net changes in regional woody vegetation cover and carbon storage in Texas Drylands, 1937-1999 [J].
Asner, GP ;
Archer, S ;
Hughes, RF ;
Ansley, RJ ;
Wessman, CA .
GLOBAL CHANGE BIOLOGY, 2003, 9 (03) :316-335
[5]   CHARACTERIZING CANOPY GAP STRUCTURE IN FORESTS USING WAVELET ANALYSIS [J].
BRADSHAW, GA ;
SPIES, TA .
JOURNAL OF ECOLOGY, 1992, 80 (02) :205-215
[6]   Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America [J].
Brandtberg, T ;
Warner, TA ;
Landenberger, RE ;
McGraw, JB .
REMOTE SENSING OF ENVIRONMENT, 2003, 85 (03) :290-303
[7]   Wavelets for computationally efficient hyperspectral derivative analysis [J].
Bruce, LM ;
Li, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (07) :1540-1546
[8]   Automated detection of subpixel hyperspectral targets with continuous and discrete wavelet transforms [J].
Bruce, LM ;
Morgan, C ;
Larsen, S .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (10) :2217-2226
[9]  
Evans DL, 2001, PHOTOGRAMM ENG REM S, V67, P1133
[10]  
EVANS JS, 2005, LIDAR CONCEPTS RESOU