A backtracking search algorithm combined with Burger's chaotic map for parameter estimation of PEMFC electrochemical model

被引:91
作者
Askarzadeh, Alireza [1 ]
Coelho, Leandro dos Santos [2 ,3 ]
机构
[1] Grad Univ Adv Technol, Inst Sci & High Technol & Environm Sci, Dept Energy Management & Optimizat, Kerman, Iran
[2] Pontificia Univ Catolica Parana, Ind & Syst Engn Grad Program, Curitiba, Parana, Brazil
[3] Univ Fed Parana, Dept Elect Engn, BR-80060000 Curitiba, Parana, Brazil
关键词
Proton exchange membrane fuel cells; Backtracking search algorithm; Parameter estimation; OPTIMIZATION ALGORITHM; GLOBAL OPTIMIZATION; DIFFERENTIAL EVOLUTION;
D O I
10.1016/j.ijhydene.2014.05.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polarization curves are vital tools for simulation, evaluation, management, and optimization of proton exchange membrane fuel cells (PEMFCs). They are affected by various parameters related to the nonlinearities associated with the electrochemical processes governing fuel cells (FCs). However, the relative importance and effect of each parameter on the polarization curve is different. In order to efficiently estimate the unknown parameters of the PEMFC electrochemical-based model and obtain accurate solutions, in this paper, a backtracking search algorithm combined with Burger's chaotic map (BSABCM) is proposed and investigated. The results related to two real systems, the SR-12 Modular PEM Generator and the Ballard Mark V FC, illustrate the effectiveness of the proposed methodology. Furthermore, the BSABCM presented competitive results when compared with the results of the other metaheuristics. Copyright (C) 2014, Hydrogen Energy Publications, LLC: Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11165 / 11174
页数:10
相关论文
共 33 条
[1]   Parameter estimation of fuel cell polarization curve using BMO algorithm [J].
Askarzadeh, Alireza .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (35) :15405-15413
[2]   Optimization of PEMFC model parameters with a modified particle swarm optimization [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (14) :1258-1265
[3]   A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (08) :5047-5053
[4]   Artificial immune system-based parameter extraction of proton exchange membrane fuel cell [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2011, 33 (04) :933-938
[5]   Review of proton exchange membrane fuel cell models [J].
Biyikoglu, A .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (11) :1181-1212
[6]  
Burgers J.M., 1939, Verh. Nederl. Akad. Wetensch. Afd. Natuurk. Sect, V17, P1
[7]   PEM fuel cell modeling using differential evolution [J].
Chakraborty, Uday K. ;
Abbott, Travis E. ;
Das, Sajal K. .
ENERGY, 2012, 40 (01) :387-399
[8]   The optimal design for PEMFC modeling based on Taguchi method and genetic algorithm neural networks [J].
Chang, Koan-Yuh .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (21) :13683-13694
[9]   Backtracking Search Optimization Algorithm for numerical optimization problems [J].
Civicioglu, Pinar .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) :8121-8144
[10]   Artificial cooperative search algorithm for numerical optimization problems [J].
Civicioglu, Pinar .
INFORMATION SCIENCES, 2013, 229 :58-76