Contrasting modes of light acclimation in two species of the rainforest understory

被引:58
作者
Kursar, TA [1 ]
Coley, PD [1 ]
机构
[1] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
tropical; shade tolerance; quantum yield; leaf angle; leaf lifespan;
D O I
10.1007/s004420050955
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
In tropical rainforests, the increased light associated with the formation of treefall gaps can have a critical impact on the growth and survivorship of understory plants. Here we examine both leaf-level and whole-plant responses to simulated light gap formation by two common shade-tolerant shrubs, Hybanthus prunifolius and Ouratea lucens. The species were chosen because they differed in leaf lifespans, a trait that has been correlated with a number of leaf- and plant-level processes. Ouratea leaves typically live about 5 years, while Hybanthus leaves live less than 1 year. Potted plants were placed in the understory shade for 2 years before transfer to a light gap. After 2 days in high light, leaves of both species showed substantial photoinhibition, including reduced CO2 fixation, F-v/F-m and light use efficiency, although photoinhibition was most severe in Hybanthus. After 17 days in high light, leaves of both species were no longer photoinhibited. In response to increased light, Ouratea made very few new leaves, but retained most of its old leaves which increased photosynthetic capacity by 50%. Within a few weeks of transfer to high light, Hy banthus had dropped nearly all of its shade leaves and made new leaves that had a 2.5-fold greater light-saturated photosynthetic rate. At 80 days after transfer, the number of new leaves was 4.9-fold the initial leaf number. After 80 days in high light, Hybanthus had approximately tenfold greater productivity than Ouratea when leaf area, photosynthetic capacity, and leaf dark respiration rate were all taken into account. Although both species are considered shade tolerant, we found that their growth responses were quite different following transfer from low to high light, The short-lived Hybanthus leaves were quickly dropped, and a new canopy of sun leaves was produced. In contrast, Ouratea showed little growth response at the whole-plant level, but a greater ability to tolerate light stress and acclimate at the leaf level. These differences are consistent with predictions based on leaf lifespan and are discussed within the context of other traits associated with shade-tolerant syndromes.
引用
收藏
页码:489 / 498
页数:10
相关论文
共 68 条
[1]  
Ackerly David D., 1996, P619
[2]  
[Anonymous], 1996, The ecology of tropical forest tree seedlings
[3]  
BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6
[4]   SPECIES COMPOSITION IN GAPS AND STRUCTURE OF A TROPICAL FOREST [J].
BROKAW, NVL ;
SCHEINER, SM .
ECOLOGY, 1989, 70 (03) :538-541
[5]   DIFFERENT RESPONSES TO GAPS AMONG SHADE-TOLERANT TREE SPECIES [J].
CANHAM, CD .
ECOLOGY, 1989, 70 (03) :548-550
[6]   THE MINERAL-NUTRITION OF WILD PLANTS [J].
CHAPIN, FS .
ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1980, 11 :233-260
[7]   PHOTOSYNTHETIC LIGHT ENVIRONMENTS IN A LOWLAND TROPICAL RAIN-FOREST IN COSTA-RICA [J].
CHAZDON, RL ;
FETCHER, N .
JOURNAL OF ECOLOGY, 1984, 72 (02) :553-564
[8]  
Chazdon Robin L., 1996, P5
[9]   LIFE-HISTORY DIVERSITY OF CANOPY AND EMERGENT TREES IN A NEOTROPICAL RAIN-FOREST [J].
CLARK, DA ;
CLARK, DB .
ECOLOGICAL MONOGRAPHS, 1992, 62 (03) :315-344
[10]  
Coley P.D., 1991, PLANT ANIMAL INTERAC