Near-infrared spectroscopy: does it function in functional activation studies of the adult brain?

被引:184
作者
Obrig, H [1 ]
Wenzel, R [1 ]
Kohl, M [1 ]
Horst, S [1 ]
Wobst, P [1 ]
Steinbrink, J [1 ]
Thomas, F [1 ]
Villringer, A [1 ]
机构
[1] Humboldt Univ, Dept Neurol, D-10098 Berlin, Germany
关键词
near infrared spectroscopy (NIRS); motion sensitivity; contingent negative variation; cytochrome oxidase;
D O I
10.1016/S0167-8760(99)00048-3
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Changes in optical properties of biological tissue can be examined by near-infrared spectroscopy (NIRS). The relative transparency of tissues including the skull to near-infrared light is the prerequisite to apply the method to brain research. We describe the methodology with respect to its applicability in non-invasive functional research of the adult cortex A summary of studies establishing the 'typical' response in NIRS vascular parameters, i.e. changes in the concentration of oxygenated and deoxygenated haemoglobin, over an activated area is followed by the validation of changes in the cytochrome-oxidase redox state in response to a visual stimulus. Proceeding from these findings a rough mapping of this metabolic response over the motion-sensitive extrastriate visual area is demonstrated. NIRS measures concentration changes in deoxygenated haemoglobin [deoxy-Hb] which are assumed to be the basis of fMRI BOLD contrast (blood oxygenation level-dependent), The method is therefore an excellent tool to validate assumptions on the physiological basis underlying the fMRI signal, due to its high specificity as to the parameters measured. Questions concerning the concept of 'activation'/'deactivation' and that of the linearity of the vascular response are discussed. To challenge the method we finally present results from a complex single-trial motor paradigm study testing the hypothesis, that premotor potentials (contingent negative variation) can be examined by functional techniques relying on the vascular response. Some of the work described here has been 'published elsewhere. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:125 / 142
页数:18
相关论文
共 70 条
[1]   PROCESSING STRATEGIES FOR TIME-COURSE DATA SETS IN FUNCTIONAL MRI OF THE HUMAN BRAIN [J].
BANDETTINI, PA ;
JESMANOWICZ, A ;
WONG, EC ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1993, 30 (02) :161-173
[2]  
BELLIVEAU JW, 1992, INVEST RADIOL, V27, P59
[3]  
BENARON DA, 1994, ADV EXP MED BIOL, V345, P609
[4]  
BENARON DA, 1994, ADV EXP MED BIOL, V361, P207
[5]   DISTRIBUTION OF SLOW BRAIN POTENTIALS RELATED TO MOTOR PREPARATION AND STIMULUS ANTICIPATION IN A TIME-ESTIMATION TASK [J].
BRUNIA, CHM ;
DAMEN, EJP .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1988, 69 (03) :234-243
[6]   Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging [J].
Buckner, RL ;
Bandettini, PA ;
OCraven, KM ;
Savoy, RL ;
Petersen, SE ;
Raichle, ME ;
Rosen, BR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (25) :14878-14883
[7]   The relationship of oxygen delivery to absolute haemoglobin oxygenation and mitochondrial cytochrome oxidase redox state in the adult brain: a near-infrared spectroscopy study [J].
Cooper, CE ;
Delpy, DT ;
Nemoto, EM .
BIOCHEMICAL JOURNAL, 1998, 332 :627-632
[8]  
Cope M, 1988, Adv Exp Med Biol, V222, P183
[9]   SYSTEM FOR LONG-TERM MEASUREMENT OF CEREBRAL BLOOD AND TISSUE OXYGENATION ON NEWBORN-INFANTS BY NEAR-INFRARED TRANS-ILLUMINATION [J].
COPE, M ;
DELPY, DT .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1988, 26 (03) :289-294
[10]  
Dale AM, 1997, HUM BRAIN MAPP, V5, P329, DOI 10.1002/(SICI)1097-0193(1997)5:5<329::AID-HBM1>3.0.CO