A random-periods model for expression of cell-cycle genes

被引:40
作者
Liu, DL
Umbach, DM
Peddada, SD
Li, LP
Crockett, PW
Weinberg, CR
机构
[1] NIEHS, Biostat Branch, NIH, Res Triangle Pk, NC 27709 USA
[2] Constella Hlth Sci, Durham, NC 27713 USA
关键词
bootstrap test; gene expression; microarray; nonlinear regression;
D O I
10.1073/pnas.0402285101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a nonlinear regression model for quantitatively analyzing periodic gene expression in studies of experimentally synchronized cells. Our model accounts for the observed attenuation in cycle amplitude by a simple and biologically plausible mechanism. We represent the expression level for each gene as an average across a large number of cells. For a given cell-cycle gene, we model its expression in each cell in the culture as following the same sinusoidal function except that the period, which in any individual cell must be the same for all cell-cycle genes, varies randomly across cells. We model these random periods by using a lognormal distribution. The variability in period causes the measured amplitude of the cyclic expression trajectory to attenuate over time as cells fall increasingly out of synchrony. Gene-specific parameters include initial amplitude and phase angle. Applying the model to data from Whitfield et al. [Whitfield, M. L., Sherlock, G., Salclanha, A. J., Murray, J, I., Ball, C. A., et al. (2002) Mol. Biol. Cell 13, 1977-2000], we fit the trajectories of 18 well characterized phase-marker genes and find that the fit does not suffer when a common lognormal distribution is assumed for all 18 genes compared with a separate distribution for each. We then use the model to identify 337 periodically expressed transcripts, including the 18 phase-marker genes. The model permits estimation of and hypothesis testing about biologically meaningful parameters that characterize cycling genes.
引用
收藏
页码:7240 / 7245
页数:6
相关论文
共 22 条
[1]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[2]   A genome-wide transcriptional analysis of the mitotic cell cycle [J].
Cho, RJ ;
Campbell, MJ ;
Winzeler, EA ;
Steinmetz, L ;
Conway, A ;
Wodicka, L ;
Wolfsberg, TG ;
Gabrielian, AE ;
Landsman, D ;
Lockhart, DJ ;
Davis, RW .
MOLECULAR CELL, 1998, 2 (01) :65-73
[3]   Transcriptional regulation and function during the human cell cycle [J].
Cho, RJ ;
Huang, MX ;
Campbell, MJ ;
Dong, HL ;
Steinmetz, L ;
Sapinoso, L ;
Hampton, G ;
Elledge, SJ ;
Davis, RW ;
Lockhart, DJ .
NATURE GENETICS, 2001, 27 (01) :48-54
[4]   The transcriptional program of sporulation in budding yeast [J].
Chu, S ;
DeRisi, J ;
Eisen, M ;
Mulholland, J ;
Botstein, D ;
Brown, PO ;
Herskowitz, I .
SCIENCE, 1998, 282 (5389) :699-705
[5]  
Gallant A.R., 1987, NONLINEAR STAT MODEL
[6]   Exploring expression data: Identification and analysis of coexpressed genes [J].
Heyer, LJ ;
Kruglyak, S ;
Yooseph, S .
GENOME RESEARCH, 1999, 9 (11) :1106-1115
[7]   Fundamental patterns underlying gene expression profiles: Simplicity from complexity [J].
Holter, NS ;
Mitra, M ;
Maritan, A ;
Cieplak, M ;
Banavar, JR ;
Fedoroff, NV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (15) :8409-8414
[8]   Dynamic modeling of gene expression data [J].
Holter, NS ;
Maritan, A ;
Cieplak, M ;
Fedoroff, NV ;
Banavar, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (04) :1693-1698
[9]   A multivariate approach applied to microarray data for identification of genes with cell cycle-coupled transcription [J].
Johansson, D ;
Lindgren, P ;
Berglund, A .
BIOINFORMATICS, 2003, 19 (04) :467-473
[10]   Systematic identification of pathways that couple cell growth and division in yeast [J].
Jorgensen, P ;
Nishikawa, JL ;
Breitkreutz, BJ ;
Tyers, M .
SCIENCE, 2002, 297 (5580) :395-400