Insights into plant metabolic networks from steady-state metabolic flux analysis

被引:69
作者
Kruger, Nicholas J. [1 ]
Ratcliffe, R. George [1 ]
机构
[1] Univ Oxford, Dept Plant Sci, Oxford OX1 3RB, England
关键词
Flux map; Metabolomics; Network performance; Primary metabolism; Stable isotope labelling; MAIZE ROOT-TIPS; DEVELOPING EMBRYOS; C-13; QUANTIFICATION; EFFICIENCY; GLUCOSE; DESIGN; CYCLE; SCALE; COMPARTMENTATION;
D O I
10.1016/j.biochi.2009.01.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Steady-state metabolic flux analysis (MFA) is an experimental approach that allows the measurement of multiple fluxes in the core network of primary carbon metabolism. it is based on isotopic labelling experiments, and although well established in the analysis of micro-organisms, and some mammalian systems, the extension of the method to plant cells has been challenging because of the extensive subcellular compartmentation of the metabolic network. Despite this difficulty there has been substantial progress in developing robust protocols for the analysis of heterotrophic plant metabolism by steady-state MFA, and flux maps have now been published that reflect the metabolic phenotypes of excised root tips, developing embryos and cotyledons, hairy root cultures, and cell suspensions under a variety of physiological conditions. There has been a steady improvement in the quality, extent and statistical reliability of these analyses, and new information is emerging on the performance of the plant metabolic network and the contributions of specific pathways. The principles of steady-state MFA are outlined here, the current status of the technique for characterizing primary metabolism in plants is described, and its complementary relationship to metabolomic analysis based on metabolite composition is discussed. It is argued that there is still considerable scope for further development of the technique, either by implementing refinements that have already been adopted in microbial investigations, or by developing techniques that are particularly relevant to the problems posed by plant tissues. If successful, these developments will lead to a more powerful phenotyping tool that will be faster to implement, and which will provide the basis for fully predictive mechanistic models of the network. This in turn will lead to an improved understanding of the regulation of plant metabolic networks, as well as a firm foundation for rational metabolic engineering. (c) 2009 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:697 / 702
页数:6
相关论文
共 68 条
[1]  
ALLEN DK, PLANT METAB IN PRESS
[2]   Compartment-specific labeling information in 13C metabolic flux analysis of plants [J].
Allen, Doug K. ;
Shachar-Hill, Yalr ;
Ohlrogge, John B. .
PHYTOCHEMISTRY, 2007, 68 (16-18) :2197-2210
[3]   Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos [J].
Alonso, Ana P. ;
Goffman, Fernando D. ;
Ohlrogge, John B. ;
Shachar-Hill, Yair .
PLANT JOURNAL, 2007, 52 (02) :296-308
[4]   A metabolic flux analysis to study the role of sucrose synthase in the regulation of the carbon partitioning in central metabolism in maize root tips [J].
Alonso, Ana Paula ;
Raymond, Philippe ;
Hernould, Michel ;
Rondeau-Mouro, Corinne ;
de Graaf, Albert ;
Chourey, Prem ;
Lahaye, Marc ;
Shachar-Hill, Yair ;
Rolin, Dominique ;
Dieuaide-Noubhani, Martine .
METABOLIC ENGINEERING, 2007, 9 (5-6) :419-432
[5]   Substrate cycles in the central metabolism of maize root tips under hypoxia [J].
Alonso, Ana Paula ;
Raymond, Philippe ;
Rolin, Dominique ;
Dieuaide-Noubhani, Martine .
PHYTOCHEMISTRY, 2007, 68 (16-18) :2222-2231
[6]   A new substrate cycle in plants. evidence for a high glucose-phosphate-to-glucose turnover from in vivo steady-state and pulse-labeling experiments with [13C] glucose and [14C] glucose [J].
Alonso, AP ;
Vigeolas, H ;
Raymond, P ;
Rolin, D ;
Dieuaide-Noubhani, M .
PLANT PHYSIOLOGY, 2005, 138 (04) :2220-2232
[7]   Metabolic flux analysis in a nonstationary system:: Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol [J].
Antoniewicz, Maciek R. ;
Kraynie, David F. ;
Laffend, Lisa A. ;
Gonzalez-Lergier, Joanna ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2007, 9 (03) :277-292
[8]   Evaluation of regression models in metabolic physiology: predicting fluxes from isotopic data without knowledge of the pathway [J].
Antoniewicz, Maciek R. ;
Stephanopoulos, Gregory ;
Kelleher, Joanne K. .
METABOLOMICS, 2006, 2 (01) :41-52
[9]   Elementary metabolite units (EMU): A novel framework for modeling isotopic distributions [J].
Antoniewicz, Maciek R. ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2007, 9 (01) :68-86
[10]   Determination of metabolic fluxes in a non-steady-state system [J].
Baxter, C. J. ;
Liu, J. L. ;
Fernie, A. R. ;
Sweetlove, L. J. .
PHYTOCHEMISTRY, 2007, 68 (16-18) :2313-2319