Insights into the molecular mechanisms of bradycardia-triggered arrhythmias in long QT-3 syndrome

被引:66
作者
Clancy, CE [1 ]
Tateyama, M [1 ]
Kass, RS [1 ]
机构
[1] Columbia Univ Coll Phys & Surg, Dept Pharmacol, New York, NY 10032 USA
关键词
D O I
10.1172/JCI200215928
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Congenital long QT syndrome is a rare disease in which the electrocardiogram QT interval is prolonged due to dysfunctional ventricular repolarization. Variant 3 (LQT-3) is associated with mutations in SCN5A, the gene coding for the heart Na+ channel a subunit. Arrhythmias in LQT-3 mutation carriers are more likely to occur at rest, when heart rate is slow. Several LQT-3 Na+ channel mutations exert their deleterious effects by promoting a mode of Na+ channel gating wherein a fraction of channels fails to inactivate. This gating mode, termed "bursting," results in sustained macroscopic inward Na+ channel current (I-sus), which can delay repolarization and prolong the QT interval. However, the mechanism of heart-rate dependence of I-sus has been unresolved at the single-channel level. We investigate an LQT-3 mutant (Y1795C) using experimental and theoretical frameworks to elucidate the molecular mechanism of I-sus rate dependence. Our results indicate that mutation-induced changes in the length of time mutant channels spend bursting, rather than how readily they burst, determines I-sus. inverse heart-rate dependence. These results link mutation-induced changes in Na+ channel gating mode transitions to heart rate-dependent changes in cellular electrical activity underlying a key LQT-3 clinical phenotype.
引用
收藏
页码:1251 / 1262
页数:12
相关论文
共 37 条
[1]   Novel LQT-3 mutation affects Na+ channel activity through interactions between α- and β1-subunits [J].
An, RH ;
Wang, XL ;
Kerem, B ;
Benhorin, J ;
Medina, A ;
Goldmit, M ;
Kass, RS .
CIRCULATION RESEARCH, 1998, 83 (02) :141-146
[2]   MOLECULAR MECHANISM FOR AN INHERITED CARDIAC-ARRHYTHMIA [J].
BENNETT, PB ;
YAZAWA, K ;
MAKITA, N ;
GEORGE, AL .
NATURE, 1995, 376 (6542) :683-685
[3]   SINGLE SODIUM-CHANNELS FROM CANINE VENTRICULAR MYOCYTES - VOLTAGE DEPENDENCE AND RELATIVE RATES OF ACTIVATION AND INACTIVATION [J].
BERMAN, MF ;
CAMARDO, JS ;
ROBINSON, RB ;
SIEGELBAUM, SA .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 415 :503-531
[4]  
Bezzina C, 1999, CIRC RES, V85, P1206
[5]   Multiple effects of KPQ deletion mutation on gating of human cardiac Na+ channels expressed in mammalian cells [J].
Chandra, R ;
Starmer, CF ;
Grant, AO .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1998, 274 (05) :H1643-H1654
[6]   Genetic basis and molecular mechanism for idiopathic: ventricular fibrillation [J].
Chen, QY ;
Kirsch, GE ;
Zhang, DM ;
Brugada, R ;
Brugada, J ;
Brugada, P ;
Potenza, D ;
Moya, A ;
Borggrefe, M ;
Breithardt, G ;
Ortiz-Lopez, R ;
Wang, Z ;
Antzelevitch, C ;
O'Brien, RE ;
Schulze-Bahr, E ;
Keating, MT ;
Towbin, JA ;
Wang, Q .
NATURE, 1998, 392 (6673) :293-296
[7]   Aberrant CFTR-dependent HCO3- transport in mutations associated with cystic fibrosis [J].
Choi, JY ;
Muallem, D ;
Kiselyov, K ;
Lee, MG ;
Thomas, PJ ;
Muallem, S .
NATURE, 2001, 410 (6824) :94-97
[8]   Na+ channel mutation that causes both Brugada and long-QT syndrome phenotypes -: A simulation study of mechanism [J].
Clancy, CE ;
Rudy, Y .
CIRCULATION, 2002, 105 (10) :1208-1213
[9]   Cellular consequences of HERG mutations in the long QT syndrome: precursors to sudden cardiac death [J].
Clancy, CE ;
Rudy, Y .
CARDIOVASCULAR RESEARCH, 2001, 50 (02) :301-313
[10]   Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia [J].
Clancy, CE ;
Rudy, Y .
NATURE, 1999, 400 (6744) :566-569