Analytical energy gradients for local second-order Moller-Plesset perturbation theory using density fitting approximations

被引:205
作者
Schütz, M
Werner, HJ
Lindh, R
Manby, FR
机构
[1] Univ Stuttgart, Inst Theoret Chem, D-70569 Stuttgart, Germany
[2] Lund Univ, Dept Chem Phys, S-22100 Lund, Sweden
[3] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England
关键词
D O I
10.1063/1.1760747
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An efficient method to compute analytical energy derivatives for local second-order Moller-Plesset perturbation energy is presented. Density fitting approximations are employed for all 4-index integrals and their derivatives. Using local fitting approximations, quadratic scaling with molecular size and cubic scaling with basis set size for a given molecule is achieved. The density fitting approximations have a negligible effect on the accuracy of optimized equilibrium structures or computed energy differences. The method can be applied to much larger molecules and basis sets than any previous second-order Moller-Plesset gradient program. The efficiency and accuracy of the method is demonstrated for a number of organic molecules as well as for molecular clusters. Examples of geometry optimizations for molecules with 100 atoms and over 2000 basis functions without symmetry are presented. (C) 2004 American Institute of Physics.
引用
收藏
页码:737 / 750
页数:14
相关论文
共 46 条
[1]   Linear scaling second-order Moller-Plesset theory in the atomic orbital basis for large molecular systems [J].
Ayala, PY ;
Scuseria, GE .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (08) :3660-3671
[2]   Self-consistent molecular Hartree-Fock-Slater calculations - I. The computational procedure [J].
Baerends, E. J. ;
Ellis, D. E. ;
Ros, P. .
CHEMICAL PHYSICS, 1973, 2 (01) :41-51
[3]   COMPARISON OF THE BOYS AND PIPEK-MEZEY LOCALIZATIONS IN THE LOCAL CORRELATION APPROACH AND AUTOMATIC VIRTUAL BASIS SELECTION [J].
BOUGHTON, JW ;
PULAY, P .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1993, 14 (06) :736-740
[4]   CALCULATION OF SMALL MOLECULAR INTERACTIONS BY DIFFERENCES OF SEPARATE TOTAL ENERGIES - SOME PROCEDURES WITH REDUCED ERRORS [J].
BOYS, SF ;
BERNARDI, F .
MOLECULAR PHYSICS, 1970, 19 (04) :553-&
[5]   1ST-ROW DIATOMIC-MOLECULES AND LOCAL DENSITY MODELS [J].
DUNLAP, BI ;
CONNOLLY, JWD ;
SABIN, JR .
JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (12) :4993-4999
[6]  
DUNLAP BI, 1977, INT J QUANTUM CHEM, P81
[7]   Robust and variational fitting [J].
Dunlap, BI .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (10) :2113-2116
[9]   Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials [J].
Eichkorn, K ;
Weigend, F ;
Treutler, O ;
Ahlrichs, R .
THEORETICAL CHEMISTRY ACCOUNTS, 1997, 97 (1-4) :119-124
[10]   Analytical energy gradients for local second-order Moller-Plesset perturbation theory [J].
El Azhary, A ;
Rauhut, G ;
Pulay, P ;
Werner, HJ .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (13) :5185-5193