Microbial metal-ion reduction and Mars: extraterrestrial expectations?

被引:24
作者
Nealson, KH [1 ]
Cox, BL [1 ]
机构
[1] Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA
关键词
D O I
10.1016/S1369-5274(02)00326-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Dissimilatory metal-ion-reducing bacteria (DMRB) can couple the reduction of a variety of different metal ions to cellular respiration and growth. The excitement of this metabolic group lies not only in the elucidation of a new type of metabolism, but also in the potential use of these abilities for the removal of toxic organics, and in their ability to reduce (and thus, detoxify) other toxic metals, such as U(VI) and Cr(VI). This review focuses on recent advances in the study of DMRB, including the use of external electron shuttles to enhance rates of metal reduction; genome sequencing and consequent genomic and proteomic analyses; new imaging approaches for high resolution analysis of both cells and chemical components; the demonstration of fractionation of stable isotopes of iron during iron reduction; and the elucidation of the types and patterns of secondary mineral formation during metal reduction. One of the secondary minerals is magnetite, the subject of intense controversy regarding the possibility of evidence for life from the Martian meteorite ALH84001. This review thus ends with a short consideration of the evidence for magnetic 'proof' of the existence of past life on Mars.
引用
收藏
页码:296 / 300
页数:5
相关论文
共 36 条
[1]   Nonbiological fractionation of iron isotopes [J].
Anbar, AD ;
Roe, JE ;
Barling, J ;
Nealson, KH .
SCIENCE, 2000, 288 (5463) :126-128
[2]   Iron isotope biosignatures [J].
Beard, BL ;
Johnson, CM ;
Cox, L ;
Sun, H ;
Nealson, KH ;
Aguilar, C .
SCIENCE, 1999, 285 (5435) :1889-1892
[3]   High-resolution X-ray spectroscopy of rare events: a different look at local structure and chemistry [J].
Bergmann, U ;
Glatzel, P ;
Robblee, JH ;
Messinger, J ;
Fernandez, C ;
Cinco, R ;
Visser, H ;
McFarlane, K ;
Bellacchio, E ;
Pizarro, S ;
Sauer, K ;
Yachandra, VK ;
Klein, MP ;
Cox, BL ;
Nealson, KH ;
Cramer, SP .
JOURNAL OF SYNCHROTRON RADIATION, 2001, 8 :199-203
[4]  
Brantley SL, 2001, GEOLOGY, V29, P535, DOI 10.1130/0091-7613(2001)029<0535:FOFIBS>2.0.CO
[5]  
2
[6]   Magnetite morphology and life on Mars [J].
Buseck, PR ;
Dunin-Borkowski, RE ;
Devouard, B ;
Frankel, RB ;
McCartney, MR ;
Midgley, PA ;
Pósfai, M ;
Weyland, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) :13490-13495
[7]   Zinc immobilization and magnetite formation via ferric oxide reduction by Shewanella putrefaciens 200 [J].
Cooper, DC ;
Picardal, F ;
Rivera, J ;
Talbot, C .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (01) :100-106
[8]   Mineral transformation associated with the microbial reduction of magnetite [J].
Dong, HL ;
Fredrickson, JK ;
Kennedy, DW ;
Zachara, JM ;
Kukkadapu, RK ;
Onstott, TC .
CHEMICAL GEOLOGY, 2000, 169 (3-4) :299-318
[9]   Magnetic microstructure of magnetotactic bacteria by electron holography [J].
Dunin-Borkowski, RE ;
McCartney, MR ;
Frankel, RB ;
Bazylinski, DA ;
Posfai, M ;
Buseck, PR .
SCIENCE, 1998, 282 (5395) :1868-1870
[10]   Off-axis electron holography of magnetotactic bacteria:: magnetic microstructure of strains MV-1 and MS-1 [J].
Dunin-Borkowski, RE ;
McCartney, MR ;
Pósfai, M ;
Frankel, RB ;
Bazylinski, DA ;
Buseck, PR .
EUROPEAN JOURNAL OF MINERALOGY, 2001, 13 (04) :671-684