Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development

被引:192
作者
Vlodavsky, I [1 ]
Goldshmidt, O [1 ]
Zcharia, E [1 ]
Atzmon, R [1 ]
Rangini-Guatta, Z [1 ]
Elkin, M [1 ]
Peretz, T [1 ]
Friedmann, Y [1 ]
机构
[1] Hadassah Hebrew Univ Hosp, Dept Oncol, IL-91120 Jerusalem, Israel
关键词
metastasis; angiogenesis; heparanase; endoglycosidase; heparan sulphate proteoglycans; extracellular matrix;
D O I
10.1006/scbi.2001.0420
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Cleavage of heparan sulphate proteoglycans (HSPGs) affects the integrity and functional state of tissues and thereby fundamental normal and pathological phenomena involving cell migration and response to changes in the extracellular microenvironment. Heparanase, degrading heparan sulphate (HS) at specific intrachain sites, is synthesized as a latent similar to65 kDa protein that is processed at the N-terminus into a highly active similar to50 kDa form. The heparanase enzyme is preferentially expressed in human tumours and its overexpression in low-metastatic tumour cells confers a highly invasive phenotype in experimental animals. Heparanase also releases angiogenic factors and accessory fragments of HS from the tumour microenvironment and induces an angiogenic response in vivo. Heparanase may thus facilitate tumour cell invasion, vascularization and survival in a even microenvironment, all critical events in cancer progression. These observations, the anticancerous effect of heparanase-inhibiting molecules, and the unexpected identification of a single predominant functional heparanase suggest that the enzyme is a promising target for drug development.
引用
收藏
页码:121 / 129
页数:9
相关论文
共 43 条
[1]   Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis [J].
Al-Mehdi, AB ;
Tozawa, K ;
Fisher, AB ;
Shientag, L ;
Lee, A ;
Muschel, RJ .
NATURE MEDICINE, 2000, 6 (01) :100-102
[2]   Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis [J].
Bergers, G ;
Brekken, R ;
McMahon, G ;
Vu, TH ;
Itoh, T ;
Tamaki, K ;
Tanzawa, K ;
Thorpe, P ;
Itohara, S ;
Werb, Z ;
Hanahan, D .
NATURE CELL BIOLOGY, 2000, 2 (10) :737-744
[3]   Functions of cell surface heparan sulfate proteoglycans [J].
Bernfield, M ;
Götte, M ;
Park, PW ;
Reizes, O ;
Fitzgerald, ML ;
Lincecum, J ;
Zako, M .
ANNUAL REVIEW OF BIOCHEMISTRY, 1999, 68 :729-777
[4]   Heparin and cancer revisited: Mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis [J].
Borsig, L ;
Wong, R ;
Feramisco, J ;
Nadeau, DR ;
Varki, NM ;
Varki, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (06) :3352-3357
[5]   Changing views of the role of matrix metalloproteinases in metastasis [J].
Chambers, AF ;
Matrisian, LM .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1997, 89 (17) :1260-1270
[6]   INTEGRAL MEMBRANE HEPARAN-SULFATE PROTEOGLYCANS [J].
DAVID, G .
FASEB JOURNAL, 1993, 7 (11) :1023-1030
[7]   Heparanase, a potential regulator of cell-matrix interactions [J].
Dempsey, LA ;
Brunn, GJ ;
Platt, JL .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (08) :349-351
[8]   Genomic organization and chromosome localization of the newly identified human heparanase gene [J].
Dong, J ;
Kukula, AK ;
Toyoshima, M ;
Nakajima, M .
GENE, 2000, 253 (02) :171-178
[9]   Heparanase as mediator of angiogenesis: mode of action [J].
Elkin, M ;
Ilan, N ;
Ishai-Michaeli, R ;
Friedmann, Y ;
Papo, O ;
Pecker, I ;
Vlodavsky, I .
FASEB JOURNAL, 2001, 15 (07) :1661-+
[10]   Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer [J].
Fairbanks, MB ;
Mildner, AM ;
Leone, JW ;
Cavey, GS ;
Mathews, WR ;
Drong, RF ;
Slightom, JL ;
Bienkowski, MJ ;
Smith, CW ;
Bannow, CA ;
Heinrikson, RL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (42) :29587-29590