Coding, channel capacity, and noise resistance in communicating with chaos

被引:89
作者
Bollt, E
Lai, YC
Grebogi, C
机构
[1] UNIV MARYLAND,INST PLASMA RES,COLLEGE PK,MD 20742
[2] USN ACAD,DEPT MATH,ANNAPOLIS,MD 21402
[3] UNIV KANSAS,DEPT PHYS & ASTRON,LAWRENCE,KS 66045
[4] UNIV KANSAS,DEPT MATH,LAWRENCE,KS 66045
[5] UNIV POTSDAM,INST THEORET PHYS,D-14415 POTSDAM,GERMANY
关键词
D O I
10.1103/PhysRevLett.79.3787
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent work has considered the possibility of utilizing symbolic representations of controlled chaotic orbits for digital communication. We argue that dynamically a coding scheme usually leads to trajectories that live on a nonattracting but noise-resisting chaotic saddle embedded in the chaotic attractor. We present analyses and numerical computation which indicate that the channel capacity of the chaotic saddle has a devil-staircase-like behavior as a function of the noise-resisting strength. The implication is that nonlinear digital communication using chaos can yield a substantial channel capacity even in a noisy environment. [S0031-9007(97)04462-1].
引用
收藏
页码:3787 / 3790
页数:4
相关论文
共 10 条
  • [1] Blahut R.E., 1988, PRINCIPLES PRACTICE
  • [2] Encoding information in chemical chaos by controlling symbolic dynamics
    Bollt, EM
    Dolnik, M
    [J]. PHYSICAL REVIEW E, 1997, 55 (06): : 6404 - 6413
  • [3] CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS
    CUOMO, KM
    OPPENHEIM, AV
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (01) : 65 - 68
  • [4] TOPOLOGICAL AND METRIC PROPERTIES OF HENON-TYPE STRANGE ATTRACTORS
    CVITANOVIC, P
    GUNARATNE, GH
    PROCACCIA, I
    [J]. PHYSICAL REVIEW A, 1988, 38 (03): : 1503 - 1520
  • [5] Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42, DOI DOI 10.1007/978-1-4612-1140-2
  • [6] COMMUNICATING WITH CHAOS
    HAYES, S
    GREBOGI, C
    OTT, E
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (20) : 3031 - 3034
  • [7] EXPERIMENTAL CONTROL OF CHAOS FOR COMMUNICATION
    HAYES, S
    GREBOGI, C
    OTT, E
    MARK, A
    [J]. PHYSICAL REVIEW LETTERS, 1994, 73 (13) : 1781 - 1784
  • [8] A PROCEDURE FOR FINDING NUMERICAL TRAJECTORIES ON CHAOTIC SADDLES
    NUSSE, HE
    YORKE, JA
    [J]. PHYSICA D, 1989, 36 (1-2): : 137 - 156
  • [9] Robinson C., 1995, Dynamical systems: stability, symbolic dynamics, and chaos
  • [10] Rosa E, 1997, PHYS REV LETT, V78, P1247, DOI 10.1103/PhysRevLett.78.1247