PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo

被引:179
作者
Sim, SJ
Snell, KD
Hogan, SA
Stubbe, J
Rha, CK
Sinskey, AJ
机构
[1] MIT,DEPT BIOL,CAMBRIDGE,MA 02139
[2] MIT,BIOMAT SCI & ENGN LAB,CAMBRIDGE,MA 02139
[3] MIT,DEPT CHEM,CAMBRIDGE,MA 02139
关键词
polyhydroxyalkanoates; molecular weight; PHA synthase;
D O I
10.1038/nbt0197-63
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A synthetic operon for polyhydroxyalkanoate (PHA) biosynthesis designed to yield high levels of PHA synthase activity in vivo was constructed by positioning a genetic fragment encoding beta-ketothiolase and acetoacetyl-CoA reductase behind a modified synthase gene containing an Escherichia coli promoter and ribosome binding site. Plasmids containing the synthetic operon and the native Alcaligenes eutrophus PHA operon were transformed into E. coli DH5 alpha and analyzed for polyhydroxybutyrate production. The molecular weight of polymer isolated from recombinant E. coli containing the modified synthase construct; determined by multiangle light scattering, was lower than that of the polymer from E. coli containing the native A. eutrophus operon. A further decrease in polyester molecular weight was observed with increased induction of the PHA biosynthetic genes in the synthetic operon. Comparison of the enzyme activity levels of PHA biosynthetic enzymes in a strain encoding the native operon with a strain possessing the synthetic operon indicates that the amount of polyhydroxyalkanoate synthase in a host organism plays a key role in controlling the molecular weight and the polydispersity of polymer.
引用
收藏
页码:63 / 67
页数:5
相关论文
共 40 条
[1]   SOLUTION PROPERTIES OF POLY(D-BETA-HYDROXYBUTYRATE) .1. BIOSYNTHESIS AND CHARACTERIZATION [J].
AKITA, S ;
EINAGA, Y ;
MIYAKI, Y ;
FUJITA, H .
MACROMOLECULES, 1976, 9 (05) :774-780
[2]   TIGHTLY REGULATED TAC PROMOTER VECTORS USEFUL FOR THE EXPRESSION OF UNFUSED AND FUSED PROTEINS IN ESCHERICHIA-COLI [J].
AMANN, E ;
OCHS, B ;
ABEL, KJ .
GENE, 1988, 69 (02) :301-315
[3]   OCCURRENCE, METABOLISM, METABOLIC ROLE, AND INDUSTRIAL USES OF BACTERIAL POLYHYDROXYALKANOATES [J].
ANDERSON, AJ ;
DAWES, EA .
MICROBIOLOGICAL REVIEWS, 1990, 54 (04) :450-472
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   ENZYMATIC-SYNTHESIS OF POLY-BETA-HYDROXYBUTYRATE IN ZOOGLOEA-RAMIGERA [J].
FUKUI, T ;
YOSHIMOTO, A ;
MATSUMOTO, M ;
HOSOKAWA, S ;
SAITO, T ;
NISHIKAWA, H ;
TOMITA, K .
ARCHIVES OF MICROBIOLOGY, 1976, 110 (2-3) :149-156
[6]   OVEREXPRESSION AND PURIFICATION OF THE SOLUBLE POLYHYDROXYALKANOATE SYNTHASE FROM ALCALIGENES-EUTROPHUS - EVIDENCE FOR A REQUIRED POSTTRANSLATIONAL MODIFICATION FOR CATALYTIC ACTIVITY [J].
GERNGROSS, TU ;
SNELL, KD ;
PEOPLES, OP ;
SINSKEY, AJ ;
CSUHAI, E ;
MASAMUNE, S ;
STUBBE, J .
BIOCHEMISTRY, 1994, 33 (31) :9311-9320
[7]   ENZYME-CATALYZED SYNTHESIS OF POLY[(R)-(-)-3-HYDROXYBUTYRATE] - FORMATION OF MACROSCOPIC GRANULES IN-VITRO [J].
GERNGROSS, TU ;
MARTIN, DP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6279-6283
[8]  
GILBERT RG, 1995, TRENDS POLYM SCI, V3, P222
[9]   A UNIVERSAL CALIBRATION FOR GEL PERMEATION CHROMATOGRAPHY [J].
GRUBISIC, Z ;
REMPP, P ;
BENOIT, H .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER LETTERS, 1967, 5 (9PB) :753-&
[10]   RECOVERY AND CHARACTERIZATION OF POLY(3-HYDROXYBUTYRIC ACID) SYNTHESIZED IN ALCALIGENES-EUTROPHUS AND RECOMBINANT ESCHERICHIA-COLI [J].
HAHN, SK ;
CHANG, YK ;
LEE, SY .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (01) :34-39