Dynamic CPU management for real-time, middleware-based systems

被引:9
作者
Eide, E [1 ]
Stack, T [1 ]
Regehr, J [1 ]
Lepreau, J [1 ]
机构
[1] Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA
来源
RTAS 2004: 10TH IEEE REAL-TIME AND EMBEDDED TECHNOLOGY AND APPLICATIONS SYMPOSIUM, PROCEEDINGS | 2004年
关键词
D O I
10.1109/RTTAS.2004.1317274
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many real-world distributed, real-time, embedded (DRE) systems, such as multi-agent military applications, are built using commercially available operating systems, middleware, and collections of pre-existing software. The complexity of these systems makes it difficult to ensure that they maintain high quality of service (QOS). At design time, the challenge is to introduce coordinated QOS controls into multiple software elements in a non-invasive manner. At run time, the system must adapt dynamically to maintain high QOS in the face of both expected events, such as application mode changes, and unexpected events, such as resource demands from other applications. In this paper we describe the design and implementation of a CPU Broker for these types of DRE systems. The CPU Broker mediates between multiple real-time tasks and the facilities of a real-time operating system: using feedback and other inputs, it adjusts allocations over time to ensure that high application-level QOS is maintained. The broker connects to its monitored tasks in a non-invasive manner, is based on and integrated with industry-standard middleware, and implements an open architecture for new CPU management policies. Moreover, these features allow the broker to be easily combined with other QOS mechanisms and policies, as part of an overall end-to-end QOS management system. We describe our experience in applying the CPU Broker to a simulated DRE military system. Our results show that the broker connects to the system transparently and allows it to function in the face of run-time CPU resource contention.
引用
收藏
页码:286 / 295
页数:10
相关论文
共 23 条
[1]  
Abeni L., 1999, Proceedings Sixth International Conference on Real-Time Computing Systems and Applications. RTCSA'99 (Cat. No.PR00306), P70, DOI 10.1109/RTCSA.1999.811195
[2]   Analysis of a reservation-based feedback scheduler [J].
Abeni, L ;
Palopoli, L ;
Lipari, G ;
Sant'Anna, SS ;
Walpole, J .
23RD IEEE REAL-TIME SYSTEMS SYMPOSIUM, PROCEEDINGS, 2002, :71-80
[3]   Hierarchical QoS management for time sensitive applications [J].
Abeni, L ;
Buttazzo, G .
SEVENTH IEEE REAL-TIME TECHNOLOGY AND APPLICATIONS SYMPOSIUM, PROCEEDINGS, 2001, :63-72
[4]  
ABENI L, 2002, HLS LINUS
[5]  
[Anonymous], LECT NOTES COMPUTER
[6]   A dynamic quality of service middleware agent for mediating application resource usage [J].
Brandt, S ;
Nutt, G ;
Berk, T ;
Mankovich, J .
19TH IEEE REAL-TIME SYSTEMS SYMPOSIUM, PROCEEDINGS, 1998, :307-317
[7]  
Gamma E., 1995, Design Patterns: Elements of Reusable Object-Oriented Software, V206, P395
[8]   Application of the QuO quality-of-service framework to a distributed video application [J].
Karr, DA ;
Rodrigues, C ;
Loyall, JP ;
Schantz, RE ;
Krishnamurthy, Y ;
Pyarali, I ;
Schmidt, DC .
DOA'01: 3RD INTERNATIONAL SYMPOSIUM ON DISTRIBUTED OBJECTS & APPLICATIONS, PROCEEDINGS, 2001, :299-308
[9]  
Lu CY, 2003, 9TH IEEE REAL-TIME AND EMBEDDED TECHNOLOGY AND APPLICATIONS SYMPOSIUM, PROCEEDINGS, P37
[10]  
Nakajima T, 1998, LECT NOTES COMPUT SC, V1388, P1047