The mutant leucine-zipper domain impairs both dimerization and suppressive function of Foxp3 in T cells

被引:77
作者
Chae, Wook-Jin
Henegariu, Octavian
Lee, Sang-Kyou
Bothwell, Alfred L. M. [1 ]
机构
[1] Yale Univ, Sch Med, Immunobiol Sect, New Haven, CT 06520 USA
[2] Yonsei Univ, Dept Biotechnol, Seoul 120749, South Korea
关键词
autoimmunity;
D O I
10.1073/pnas.0600225103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Regulatory T cells that express the Foxp3 transcription factor play important roles in preventing autoimmune diseases. Although several studies have demonstrated that the lack of the forkhead DNA-binding domain of Foxp3 caused severe autoimmune disease in scurfy mutant mice, the other functional domains of Foxp3 are less well characterized. Here, we show that the deletion of glutamic acid (Delta E250) in the leucine-zipper domain of Foxp3 causes a loss of hyporesponsiveness when compared with wild-type Foxp3 upon antigenic stimulation. CD4 T cells that ectopically express the glutamic acid mutant show significant losses of suppressor activity both in vitro and in vivo. We also demonstrate that regulation of both Th1- and Th2-type cytokine secretion in CD4 T cells that express wild-type Foxp3 is significantly altered by the deletion of glutamic acid. Defects are also observed in the expression of adhesion molecules, such as L-selectin (CD62L) and CD103, suggesting an important role of glutamic acid in the migratory behavior of regulatory T cells. Finally, this mutation reduces transcriptional repressor activity and impairs the homodimerization of Foxp3. Taken together, our results provide insight into the mechanism that controls autoimmune diseases via the deletion of this single glutamic acid residue in the leucine-zipper domain of Foxp3.
引用
收藏
页码:9631 / 9636
页数:6
相关论文
共 31 条
[1]   The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs [J].
Allan, SE ;
Passerini, L ;
Bacchetta, R ;
Crellin, N ;
Dai, MY ;
Orban, PC ;
Ziegler, SF ;
Roncarolo, MG ;
Levings, MK .
JOURNAL OF CLINICAL INVESTIGATION, 2005, 115 (11) :3276-3284
[2]   Essential role for CD103 in the T cell-mediated regulation of experimental colitis [J].
Annacker, O ;
Coombes, JL ;
Malmstrom, V ;
Uhlig, HH ;
Bourne, T ;
Johansson-Lindbom, B ;
Agace, WW ;
Parker, CM ;
Powrie, F .
JOURNAL OF EXPERIMENTAL MEDICINE, 2005, 202 (08) :1051-1061
[3]   Suppression of rnyasthenogenic responses of a T cell line by a dual altered peptide ligand by induction of CD4+CD25+ regulatory cells [J].
Aruna, BV ;
Sela, M ;
Mozes, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (29) :10285-10290
[4]   Human CD4+CD25+ regulatory T cells [J].
Baecher-Allan, C ;
Viglietta, V ;
Hafler, DA .
SEMINARS IN IMMUNOLOGY, 2004, 16 (02) :89-97
[5]   A unique subpopulation of CD4+ regulatory T cells controls wasting disease, IL-10 secretion and T cell homeostasis [J].
Banz, A ;
Peixoto, A ;
Pontoux, C ;
Cordier, C ;
Rocha, B ;
Papiernik, M .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2003, 33 (09) :2419-2428
[6]   The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3 [J].
Bennett, CL ;
Christie, J ;
Ramsdell, F ;
Brunkow, ME ;
Ferguson, PJ ;
Whitesell, L ;
Kelly, TE ;
Saulsbury, FT ;
Chance, PF ;
Ochs, HD .
NATURE GENETICS, 2001, 27 (01) :20-21
[7]   Foxp3 interacts with nuclear factor of activated T cells and NF-κB to repress cytokine gene expression and effector functions of T helper cells [J].
Bettelli, E ;
Dastrange, M ;
Oukka, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (14) :5138-5143
[8]   Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse [J].
Brunkow, ME ;
Jeffery, EW ;
Hjerrild, KA ;
Paeper, B ;
Clark, LB ;
Yasayko, SA ;
Wilkinson, JE ;
Galas, D ;
Ziegler, SF ;
Ramsdell, F .
NATURE GENETICS, 2001, 27 (01) :68-73
[9]   JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome [J].
Chatila, TA ;
Blaeser, F ;
Ho, N ;
Lederman, HM ;
Voulgaropoulos, C ;
Helms, C ;
Bowcock, AM .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 106 (12) :R75-R81
[10]   Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3 [J].
Chen, WJ ;
Jin, WW ;
Hardegen, N ;
Lei, KJ ;
Li, L ;
Marinos, N ;
McGrady, G ;
Wahl, SM .
JOURNAL OF EXPERIMENTAL MEDICINE, 2003, 198 (12) :1875-1886