Inferring gene regulatory networks from time series data using the minimum description length principle

被引:90
作者
Zhao, Wentao [1 ]
Serpedin, Erchin
Dougherty, Edward R.
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[2] Translat Genom Res Inst, Phoenix, AZ 85004 USA
关键词
D O I
10.1093/bioinformatics/btl364
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: A central question in reverse engineering of genetic networks consists in determining the dependencies and regulating relationships among genes. This paper addresses the problem of inferring genetic regulatory networks from time-series gene-expression profiles. By adopting a probabilistic modeling framework compatible with the family of models represented by dynamic Bayesian networks and probabilistic Boolean networks, this paper proposes a network inference algorithm to recover not only the direct gene connectivity but also the regulating orientations. Results: Based on the minimum description length principle, a novel network inference algorithm is proposed that greatly shrinks the search space for graphical solutions and achieves a good trade-off between modeling complexity and data fitting. Simulation results show that the algorithm achieves good performance in the case of synthetic networks. Compared with existing state-of-the-art results in the literature, the proposed algorithm exceptionally excels in efficiency, accuracy, robustness and scalability. Given a time-series clataset for Drosophila melanogaster, the paper proposes a genetic regulatory network involved in Drosophila's muscle development. Availability: Available from the authors upon request. Contact: wtzhao@ece.tamu.edu.
引用
收藏
页码:2129 / 2135
页数:7
相关论文
共 22 条
[1]  
[Anonymous], 2002, THESIS U C BERKELEY
[2]   Gene expression during the life cycle of Drosophila melanogaster [J].
Arbeitman, MN ;
Furlong, EEM ;
Imam, F ;
Johnson, E ;
Null, BH ;
Baker, BS ;
Krasnow, MA ;
Scott, MP ;
Davis, RW ;
White, KP .
SCIENCE, 2002, 297 (5590) :2270-2275
[3]  
Beirlant J, 1997, INT J MATH STAT SCI, V6, P17
[4]  
Cover TM, 2006, Elements of Information Theory
[5]  
Dean T., 1989, Computational Intelligence, V5, P142, DOI 10.1111/j.1467-8640.1989.tb00324.x
[6]   Using Bayesian networks to analyze expression data [J].
Friedman, N ;
Linial, M ;
Nachman, I ;
Pe'er, D .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (3-4) :601-620
[7]   A protein interaction map of Drosophila melanogaster [J].
Giot, L ;
Bader, JS ;
Brouwer, C ;
Chaudhuri, A ;
Kuang, B ;
Li, Y ;
Hao, YL ;
Ooi, CE ;
Godwin, B ;
Vitols, E ;
Vijayadamodar, G ;
Pochart, P ;
Machineni, H ;
Welsh, M ;
Kong, Y ;
Zerhusen, B ;
Malcolm, R ;
Varrone, Z ;
Collis, A ;
Minto, M ;
Burgess, S ;
McDaniel, L ;
Stimpson, E ;
Spriggs, F ;
Williams, J ;
Neurath, K ;
Ioime, N ;
Agee, M ;
Voss, E ;
Furtak, K ;
Renzulli, R ;
Aanensen, N ;
Carrolla, S ;
Bickelhaupt, E ;
Lazovatsky, Y ;
DaSilva, A ;
Zhong, J ;
Stanyon, CA ;
Finley, RL ;
White, KP ;
Braverman, M ;
Jarvie, T ;
Gold, S ;
Leach, M ;
Knight, J ;
Shimkets, RA ;
McKenna, MP ;
Chant, J ;
Rothberg, JM .
SCIENCE, 2003, 302 (5651) :1727-1736
[8]   Topological and causal structure of the yeast transcriptional regulatory network [J].
Guelzim, N ;
Bottani, S ;
Bourgine, P ;
Képès, F .
NATURE GENETICS, 2002, 31 (01) :60-63
[9]   METABOLIC STABILITY AND EPIGENESIS IN RANDOMLY CONSTRUCTED GENETIC NETS [J].
KAUFFMAN, SA .
JOURNAL OF THEORETICAL BIOLOGY, 1969, 22 (03) :437-&
[10]   Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks [J].
Lähdesmäki, H ;
Hautaniemi, S ;
Shmulevich, I ;
Yli-Harja, O .
SIGNAL PROCESSING, 2006, 86 (04) :814-834