Linear minimax regret estimation of deterministic parameters with bounded data uncertainties

被引:70
作者
Eldar, YC [1 ]
Ben-Tal, A
Nemirovski, A
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[2] Technion Israel Inst Technol, Dept Ind Engn, MINERVA Optimizat Ctr, IL-32000 Haifa, Israel
关键词
deterministic parameter estimation; linear estimation; mean squared error bounded data uncertainties estimation; minimax estimation; regret;
D O I
10.1109/TSP.2004.831144
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We develop a new linear estimator for estimating an unknown parameter vector x in a linear model in the presence of bounded data uncertainties. The estimator is designed to minimize the worst-case regret over all bounded data vectors, namely, the worst-case difference between the mean-squared error (MSE) attainable using a linear estimator that does not know the true parameters x and the optimal MSE attained using a linear estimator that knows x. We demonstrate through several examples that the minimax regret estimator can significantly increase the performance over the conventional least-squares estimator, as well as several other least-squares alternatives.
引用
收藏
页码:2177 / 2188
页数:12
相关论文
共 30 条
[1]  
[Anonymous], 2001, LECT MODERN CONVEX O, DOI 10.1137/1.9780898718829.ch6
[2]  
Bertsekas D., 1999, NONLINEAR PROGRAMMIN
[3]   NOTE ON MINIMAX FILTERING [J].
BREIMAN, L .
ANNALS OF PROBABILITY, 1973, 1 (01) :175-179
[4]   UNIVERSAL NOISELESS CODING [J].
DAVISSON, LD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (06) :783-795
[5]   A competitive minimax approach to robust estimation of random parameters [J].
Eldar, YC ;
Merhav, N .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (07) :1931-1946
[6]   Covariance shaping least-squares estimation [J].
Eldar, YC ;
Oppenheim, AV .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (03) :686-697
[7]  
ELDAR YC, IN PRESS IEEE T SIGN
[8]   Universal composite hypothesis testing: A competitive minimax approach [J].
Feder, M ;
Merhav, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (06) :1504-1517
[9]   MINIMAX-ROBUST PREDICTION OF DISCRETE-TIME SERIES [J].
FRANKE, J .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 68 (03) :337-364
[10]  
Gauss KF, 1963, THEORY MOTION HEAVEN