Quantifying the roughness on the free energy landscape: Entropic bottlenecks and protein folding rates

被引:199
作者
Chavez, LL
Onuchic, JN
Clementi, C
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Rice Univ, WM Keck Ctr Computat & Struct Biol, Houston, TX 77005 USA
[3] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[5] Baylor Coll Med, Houston, TX 77030 USA
关键词
D O I
10.1021/ja049510+
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The prediction of protein folding rates and mechanisms is currently of great interest in the protein folding community. A close comparison between theory and experiment in this area is promising to advance our understanding of the physical-chemical principles governing the folding process. The delicate interplay of entropic and energetic/enthalpic factors in the protein free energy regulates the details of this complex reaction. In this article, we propose the use of topological descriptors to quantify the amount of heterogeneity in the configurational entropy contribution to the free energy. We apply the procedure to a set of 16 two-state folding proteins. The results offer a clean and simple theoretical explanation for the experimentally measured folding rates and mechanisms, in terms of the intrinsic entropic roughness along the populated folding routes on the protein free energy landscape.
引用
收藏
页码:8426 / 8432
页数:7
相关论文
共 79 条
[1]   KINETIC-ANALYSIS OF FOLDING AND UNFOLDING THE 56-AMINO ACID IGG-BINDING DOMAIN OF STREPTOCOCCAL PROTEIN-G [J].
ALEXANDER, P ;
ORBAN, J ;
BRYAN, P .
BIOCHEMISTRY, 1992, 31 (32) :7243-7248
[2]   Simple physical models connect theory and experiment in protein folding kinetics [J].
Alm, E ;
Morozov, AV ;
Kortemme, T ;
Baker, D .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 322 (02) :463-476
[3]   Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures [J].
Alm, E ;
Baker, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11305-11310
[4]   Remarkably slow folding of a small protein [J].
Aronsson, G ;
Brorsson, AC ;
Sahlman, L ;
Jonsson, BH .
FEBS LETTERS, 1997, 411 (2-3) :359-364
[5]   A surprising simplicity to protein folding [J].
Baker, D .
NATURE, 2000, 405 (6782) :39-42
[6]   Protein folding mechanisms: new methods and emerging ideas [J].
Brockwell, DJ ;
Smith, DA ;
Radford, SE .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2000, 10 (01) :16-25
[7]   FUNNELS, PATHWAYS, AND THE ENERGY LANDSCAPE OF PROTEIN-FOLDING - A SYNTHESIS [J].
BRYNGELSON, JD ;
ONUCHIC, JN ;
SOCCI, ND ;
WOLYNES, PG .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1995, 21 (03) :167-195
[8]   SPIN-GLASSES AND THE STATISTICAL-MECHANICS OF PROTEIN FOLDING [J].
BRYNGELSON, JD ;
WOLYNES, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (21) :7524-7528
[9]  
Burns LL, 1998, PROTEINS, V33, P107, DOI 10.1002/(SICI)1097-0134(19981001)33:1<107::AID-PROT10>3.3.CO
[10]  
2-N