Evolution equations for quark-gluon distributions in multi-color QCD and open spin chains

被引:84
作者
Derkachov, SE
Korchemsky, GP
Manashov, AN
机构
[1] Univ Leipzig, Inst Theoret Phys, D-04109 Leipzig, Germany
[2] St Petersburg Technol Inst, Dept Math, St Petersburg, Russia
[3] Univ Paris 11, Phys Theor Lab, Unite Mixte Rech CNRS UMR 8627, F-91405 Orsay, France
[4] St Petersburg State Univ, Dept Theoret Phys, St Petersburg 198904, Russia
关键词
D O I
10.1016/S0550-3213(99)00702-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the scale dependence of the twist-3 quark-gluon parton distributions using the observation that in the multi-color limit the corresponding QCD evolution equations possess an additional integral of motion and turn out to be effectively equivalent to the Schrodinger equation for integrable open Heisenberg spin chain model. We identify the integral of motion of the spin chain as a new quantum number that separates different components of the twist-3 parton distributions. Each component evolves independently and its scale dependence is governed by anomalous dimension given by the energy of the spin magnet. To find the spectrum of the QCD induced open Heisenberg spin magnet we develop the Bethe ansatz technique based on the Baxter equation. The solutions to the Baxter equation are constructed using different asymptotic methods and their properties are studied in detail. We demonstrate that the obtained solutions provide a good qualitative description of the spectrum of the anomalous dimensions and reveal a number of interesting properties. We show that the few lowest anomalous dimensions are separated from the rest of the spectrum by a finite mass gap and estimate its value. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:203 / 251
页数:49
相关论文
共 69 条
[1]   ASYMPTOTIC SOLUTIONS OF THE EVOLUTION EQUATION FOR THE POLARIZED NUCLEON STRUCTURE-FUNCTION G2(X, Q2) [J].
ALI, A ;
BRAUN, VM ;
HILLER, G .
PHYSICS LETTERS B, 1991, 266 (1-2) :117-125
[2]   A SET OF HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS [J].
ASKEY, R ;
WILSON, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (04) :651-655
[3]   EVOLUTION-EQUATIONS FOR QCD STRING-OPERATORS [J].
BALITSKY, II ;
BRAUN, VM .
NUCLEAR PHYSICS B, 1989, 311 (03) :541-584
[4]   Q(2) evolution of chiral-odd twist-3 distributions h(L)(x,Q(2)) and e(x,Q(2)) in large-N-c QCD [J].
Balitsky, II ;
Braun, VM ;
Koike, Y ;
Tanaka, K .
PHYSICAL REVIEW LETTERS, 1996, 77 (15) :3078-3081
[5]   Higher twist distribution amplitudes of vector mesons in QCD: Formalism and twist 3 distributions [J].
Ball, P ;
Braun, VM ;
Koike, Y ;
Tanaka, K .
NUCLEAR PHYSICS B, 1998, 529 (1-2) :323-382
[6]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[7]  
BAXTER RJ, 1971, STUD APPL MATH, V50, P51
[8]   Interaction-round-a-face models with fixed boundary conditions: The ABF fusion hierarchy [J].
Behrend, RE ;
Pearce, PA ;
OBrien, DL .
JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (1-2) :1-48
[9]   Scale dependence of the chiral-odd twist-3 distributions h(L)(x) and e(x) [J].
Belitsky, AV ;
Muller, D .
NUCLEAR PHYSICS B, 1997, 503 (1-2) :279-308
[10]   Fine structure of spectrum of twist-three operators in QCD [J].
Belitsky, AV .
PHYSICS LETTERS B, 1999, 453 (1-2) :59-72