Repeated bond traversal probabilities for the simple random walk

被引:4
作者
Antal, T [1 ]
Hilhorst, HJ
Zia, RKP
机构
[1] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland
[2] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France
[3] Virginia Polytech Inst & State Univ, Dept Phys, Ctr Stochast Proc Sci & Engn, Blacksburg, VA 24061 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 39期
关键词
D O I
10.1088/0305-4470/35/39/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the average number B-m(t) of bonds traversed exactly m times by a t step simple random walk. We determine B-m(t) explicitly in the scaling limit t --> infinity with m/roott fixed in dimension d = 1 and m/log t fixed in dimension d = 2. The scaling function is an erfc in d = 1 and an exponential in d = 2.
引用
收藏
页码:8145 / 8152
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 1996, RANDOM WALKS RANDOM
[2]  
Barber M., 1970, RANDOM RESTRICTED WA
[3]  
Erdos P., 1960, Acta Math. Acad. Sci. Hung, V11, P137, DOI [DOI 10.1007/BF02020631, 10.1007/BF02020631]
[4]   EXPECTED NUMBER OF DISTINCT SITES VISITED BY A RANDOM WALK WITH AN INFINITE VARIANCE [J].
GILLIS, JE ;
WEISS, GH .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (04) :1307-+
[5]  
Hamana Y, 1997, ANN PROBAB, V25, P598
[6]   ON THE NUMBER OF DISTINCT SITES VISITED IN 2D LATTICES [J].
HENYEY, FS ;
SESHADRI, V .
JOURNAL OF CHEMICAL PHYSICS, 1982, 76 (11) :5530-5534
[7]  
Laot C., 2001, THESIS VIRGINIA POLY
[8]  
LAOT CM, 2002, IN PRESS
[9]   Statistics of the one-dimensional Riemann walk [J].
Mariz, AM ;
van Wijland, F ;
Hilhorst, HJ ;
Gomes, SR ;
Tsallis, C .
JOURNAL OF STATISTICAL PHYSICS, 2001, 102 (1-2) :259-283
[10]   RANDOM WALKS ON LATTICES .2. [J].
MONTROLL, EW ;
WEISS, GH .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (02) :167-+